可解释人工智能技术在食品数据集解读中的应用

预印本

Leonardo Arrighi*

数学、信息学与地球科学系
意大利的里雅斯特大学

- Marco Zullich

人工智能系
荷兰格罗宁根大学

Douglas Fernandes Barbin

食品工程与技术系
巴西坎皮纳斯大学

Ingrid Alves de Moraes

食品工程与技术系
巴西坎皮纳斯大学

Michele Simonato

ASAC s.r.l., Cessalto (TV), 意大利

- Sylvio Barbon Junior

工程与建筑系
意大利的里雅斯特大学

2025年4月16日

摘要

人工智能(AI)已成为分析复杂数据和解决高挑战性任务的重要工具。它被广泛应用于计算机科学以外的众多学科,包括食品工程,在那里对准确和可信预测的需求日益增加以满足严格的食品安全标准。然而,这需要越来越复杂的AI模型,引发了对其可靠性的担忧。为此,可解释人工智能(XAI)应运而生,通过提供对AI决策过程的洞察来帮助开发人员和用户理解模型。尽管如此,XAI在食品工程中的应用仍然不足,限制了模型的可靠性。例如,在食品质量控制中,使用光谱成像的AI模型可以检测污染物或评估新鲜度水平,但其不透明的决策过程阻碍了其采用。XAI技术如SHAP(Shapley Additive Explanations)和Grad-CAM(Gradient-weighted Class Activation Mapping)可以确定哪些光谱波长或图像区域对预测贡献最大,从而提高透明度并帮助质量控制检查员验证AI生成的评估。本调查提出了一个分类食品质量研究的分类法,按数据类型和解释方法组织,以指导研究人员选择合适的方法。我们还强调了趋势、挑战和机会,以鼓励在食品工程中采用XAI。

关键词 食品质量 ⋅ \cdot 食品工程 ⋅ \cdot 人工智能 ⋅ \cdot XAI ⋅ \cdot 可解释性 ⋅ \cdot 解释性 ⋅ \cdot 负责任AI

1 引言

快速的技术进步和数据量的增长使得人工智能(AI)成为现代工业和研究中的重要工具 [1,2,3,4]。食品工程代表了AI技术的一个完美应用领域,因为食品需要深入的研究、加工和分析。该领域产生的大量数据使AI在数据分析方面特别有价值。然而,AI的广泛应用引入了关于其可信性和可靠性的新问题。

为了确保结果的可信度,不仅需要了解AI模型背后的决策过程,还需要增强其透明度、可审计性和信息性[5]。尽管如此,可解释的AI方法在食品行业仍未得到广泛应用,突显了该领域对透明度和模型可解释性关注的必要性。作为对此需求的回应,可解释人工智能(XAI)作为一种重要的研究领域出现,以提高AI模型预测的可信度。它涵盖了旨在阐明这些模型行为的技术,通过提供对其复杂操作的见解。在食品工程中,XAI已被应用于允许在诸如污染物检测、营养价值估算和产品认证等任务中准确识别和验证关键特征,确保食品安全控制中的安全性、透明性和可靠性。这使得模型用户和消费者更有信心,识别潜在偏差以提高准确性,并支持开发更安全、质量更高的新产品。
鉴于食品在人类生活中的基本作用,食品行业对将这些技术应用于确保AI驱动结果的可靠性表现出浓厚兴趣[6]。然而,我们在连接XAI与食品工程的文献中发现了几个空白。首先,跨各种出版物使用的术语和关键词缺乏标准化,给数据分析师和食品工程师之间的有效沟通带来了挑战。例如,“解释”、“说明”和“理解”等术语经常用于类似的任务,特别是在利用AI模型进行食品质量研究时互换使用。此外,尚无全面概述当前最先进的技术,解决这些差异并提供关于优势和劣势的见解,这对于非专家理解这些学科在研究中的进展和潜力非常重要。
本调查为食品行业专家提供了有关XAI潜力和重要性的宝贵见解。特别是,它概述了XAI在食品行业中关键质量任务上的当前应用,如食品安全、营养价值确定、感官属性、真实性和可追溯性以及可持续性和健康性。我们根据数据类型(表格、图像、光谱和时间序列)和由所应用的XAI方法生成的解释形式对应用进行分类,强调其进一步发展的潜力,如图1所示。每个任务、数据类型和解释形式在第2节、2.1节和第3节中进行了详细讨论。
img-0.jpeg

图1:从食品质量任务到XAI技术的概述方案。XAI作为数据处理管道的终点,考虑任务、数据类型和所用特定AI模型,例如机器学习和深度学习。根据这些因素,采用一种或多种特定的XAI技术,生成有助于模型开发者或用户了解预测动态的信息令牌。解释可以以不同的类型呈现,每种类型传达信息的不同方面。

此外,我们的目标是通过提出一个分类法并在有组织的结构中安排当前XAI在食品研究中的应用,来弥合XAI和食品质量领域的差距。具体目标如下:

  • 进行全面调查并定义一个分类系统,以组织应用于食品质量的XAI方法;
    • 引入与食品质量相关的分类法,以增进对所分析工作的理解;
    • 总结所使用的XAI技术,详细说明所涉及的数据类型和AI方法;
    • 提供XAI在食品行业中当前应用的概览,从一百多篇论文中汲取见解;
    • 从分析的工作中提供比较见解,直观地连接食品质量任务、数据类型和XAI方法;
    • 突出持续的挑战并提出食品行业中潜在的未来研究方向。
  • 仅考虑专门针对食品质量主题的文章。即使涵盖了食品工程和XAI,但未明确描述在食品质量领域使用特定“XAI技术”的论文则排除在我们的分析之外。我们在Google Scholar和Scopus上进行了详尽搜索,使用以下关键词:“可解释的人工智能”,“XAI”,“食品”,“食品科学”,“食品质量”,“食品控制”和“农业”。这些术语战略性地结合在一起,覆盖过去十年内相关的文献。我们检查了初始搜索所得文章的参考部分以识别额外的相关文章,并将其整合到我们的研究基础中。最后,我们集中于几种广泛使用的XAI技术,包括局部可解释模型无关解释(LIME)[7],SHapley Additive exPlanations(SHAP)[8],类激活映射(CAM)[9],部分依赖图(PDP)[10]和层相关传播(LRP)[11]。我们调查引用这些基础工作的论文以识别任何其他相关文章,并将其纳入我们的研究基础。
  • 通过本次调查,我们希望使学者和实践者能够根据他们面临的问题或拥有的数据,以及预期的应用和所需的解释类型,识别最适合的技术。

2 解释食品质量

食品行业是全球经济中的一个重要部门,其中监测食品质量对于确保市场上提供的食品产品安全、营养和感官吸引力至关重要。食品质量直接影响公共健康、社会福祉和环境可持续性,影响负责任的生产和消费实践。因此,满足消费者的期望对于确保接受、促进品牌忠诚度和鼓励健康食品选择至关重要,最终支持商业成功和长期可持续性[12]。
为了对食品质量进行全面分析,我们提出了一个涵盖五个主要主题的分类法:食品安全、营养成分、感官属性、供应链中的真实性和可追溯性以及食品工程和营养背景下的可持续性和健康。每个主题都提供了对构成食品质量的元素和挑战的详细理解,反映了消费者的需求和期望[12]。
食品安全:食品安全涉及确保食品免受可能带来健康风险的剂物质。除了实施严格的卫生程序和卫生措施以尽量减少污染风险外,控制病原体如细菌、病毒和寄生虫也至关重要。此外,必须严格控制农药残留、重金属和有害化学添加剂的存在。具体法规限制了这些污染物在食品中的浓度,以确保消费者的安全[13]。
营养价值:营养价值直接与食品组成及其对人体健康和福祉的影响相关。富含维生素、矿物质、蛋白质、碳水化合物和健康脂肪的食物对于身体的正常运作至关重要,并且可以防止基于其成分的营养缺乏症。除了营养价值外,营养素的生物利用率也是食物的重要质量方面[14]。
感官属性:食品的感官要求直接被消费者感知,使其成为产品与消费者之间互动的重要手段。颜色、形状和味道以及其他外观属性是质量和新鲜度的关键指标。感官标准对于表示新鲜食品尤为重要,通常具有更高的营养价值和消费者接受度[15]。
真实性和可追溯性:食品的真实性和可追溯性确保符合法律标准并增加消费者信心。识别和预防欺诈行为,如食品掺假和伪造,对于保证产品真实性至关重要。它们不仅表明真实性,还验证物种多样性并监控种植、生产和储存期间的环境条件,从而确保食品质量和可持续性[16,17,18,19]。
可持续性和健康:可持续性和健康对于提供具有理想感官和物理化学特性的食品至关重要,同时保证动物福利、环境保护和消费者健康。使用技术分析植物的表型特性促进了更具弹性和营养作物的发展。在食品生产中实施自动化流程提高了效率,减少了浪费,并改善了食品安全[20,21]。我们将健康与营养价值区分开来,更广泛地定义它,包括疾病预防、免疫支持、心理健康以及食品加工、添加剂和潜在过敏原的影响。
由于食品在人类生活中扮演着至关重要的角色,食品行业对应用这些技术以确保AI驱动结果的可靠性表现出极大的兴趣[6]。然而,我们已经确定了将XAI与食品工程联系起来的文献中的几个空白。首先,跨各种出版物使用的术语和关键词缺乏标准化,给数据分析师和食品工程师之间的有效沟通带来了挑战。例如,“解释”、“说明”和“理解”等术语经常用于类似的任务,特别是在利用AI模型进行食品质量研究时互换使用。此外,尚无全面概述当前最先进的技术,解决这些差异并提供关于优势和劣势的见解,这对于非专家理解这些学科在研究中的进展和潜力非常重要。
本调查为食品行业专家提供了有关XAI潜力和重要性的宝贵见解。特别是,它概述了XAI在食品行业中关键质量任务上的当前应用,如食品安全、营养价值确定、感官属性、真实性和可追溯性以及情境下的可持续性和健康。我们根据数据类型(表格、图像、光谱和时间序列)和由所应用的XAI方法生成的解释形式对应用进行分类,强调其进一步发展的潜力,如图1所示。每个任务、数据类型和解释形式在第2节、2.1节和第3节中进行了详细讨论。
img-0.jpeg

图1:从食品质量任务到XAI技术的概述方案。XAI作为数据处理管道的终点,考虑任务、数据类型和所用特定AI模型,例如机器学习和深度学习。根据这些因素,采用一种或多种特定的XAI技术,生成有助于模型开发者或用户了解预测动态的信息令牌。解释可以以不同的类型呈现,每种类型传达信息的不同方面。

此外,我们的目标是通过提出一个分类法并在有组织的结构中安排当前XAI在食品研究中的应用,来弥合XAI和食品质量领域的差距。具体目标如下:

  • 进行全面调查并定义一个分类系统,以组织应用于食品质量的XAI方法;
    • 引入与食品质量相关的分类法,以增进对所分析工作的理解;
    • 总结所使用的XAI技术,详细说明所涉及的数据类型和AI方法;
    • 提供XAI在食品行业中当前应用的概览,从一百多篇论文中汲取见解;
    • 从分析的工作中提供比较见解,直观地连接食品质量任务、数据类型和XAI方法;
    • 突出持续的挑战并提出食品行业中潜在的未来研究方向。
  • 仅考虑专门针对食品质量主题的文章。即使涵盖了食品工程和XAI,但未明确描述在食品质量领域使用特定“XAI技术”的论文则排除在我们的分析之外。我们在Google Scholar和Scopus上进行了详尽搜索,使用以下关键词:“可解释的人工智能”,“XAI”,“食品”,“食品科学”,“食品质量”,“食品控制”和“农业”。这些术语战略性地结合在一起,覆盖过去十年内相关的文献。我们检查了初始搜索所得文章的参考部分以识别额外的相关文章,并将其整合到我们的研究基础中。最后,我们集中于几种广泛使用的XAI技术,包括局部可解释模型无关解释(LIME)[7],SHapley Additive exPlanations(SHAP)[8],类激活映射(CAM)[9],部分依赖图(PDP)[10]和层相关传播(LRP)[11]。我们调查引用这些基础工作的论文以识别任何其他相关文章,并将其纳入我们的研究基础。
  • 通过本次调查,我们希望使学者和实践者能够根据他们面临的问题或拥有的数据,以及预期的应用和所需的解释类型,识别最适合的技术。

2 解释食品质量

食品行业是全球经济中的一个重要部门,其中监测食品质量对于确保市场上提供的食品产品安全、营养和感官吸引力至关重要。食品质量直接影响公共健康、社会福祉和环境可持续性,影响负责任的生产和消费实践。因此,满足消费者的期望对于确保接受、促进品牌忠诚度和鼓励健康食品选择至关重要,最终支持商业成功和长期可持续性[12]。
为了对食品质量进行全面分析,我们提出了一个涵盖五个主要主题的分类法:食品安全、营养成分、感官属性、供应链中的真实性和可追溯性以及食品工程和营养背景下的可持续性和健康。每个主题都提供了对构成食品质量的元素和挑战的详细理解,反映了消费者的需求和期望[12]。
食品安全:食品安全涉及确保食品免受可能带来健康风险的剂物质。除了实施严格的卫生程序和卫生措施以尽量减少污染风险外,控制病原体如细菌、病毒和寄生虫也至关重要。此外,必须严格控制农药残留、重金属和有害化学添加剂的存在。具体法规限制了这些污染物在食品中的浓度,以确保消费者的安全[13]。
营养价值:营养价值直接与食品组成及其对人体健康和福祉的影响相关。富含维生素、矿物质、蛋白质、碳水化合物和健康脂肪的食物对于身体的正常运作至关重要,并且可以防止基于其成分的营养缺乏症。除了营养价值外,营养素的生物利用率也是食物的重要质量方面[14]。
感官属性:食品的感官要求直接被消费者感知,使其成为产品与消费者之间互动的重要手段。颜色、形状和味道以及其他外观属性是质量和新鲜度的关键指标。感官标准对于表示新鲜食品尤为重要,通常具有更高的营养价值和消费者接受度[15]。
真实性和可追溯性:食品的真实性和可追溯性确保符合法律标准并增加消费者信心。识别和预防欺诈行为,如食品掺假和伪造,对于保证产品真实性至关重要。它们不仅表明真实性,还验证物种多样性并监控种植、生产和储存期间的环境条件,从而确保食品质量和可持续性[16,17,18,19]。
可持续性和健康:可持续性和健康对于提供具有理想感官和物理化学特性的食品至关重要,同时保证动物福利、环境保护和消费者健康。使用技术分析植物的表型特性促进了更具弹性和营养作物的发展。在食品生产中实施自动化流程提高了效率,减少了浪费,并改善了食品安全[20,21]。我们将健康与营养价值区分开来,更广泛地定义它,包括疾病预防、免疫支持、心理健康以及食品加工、添加剂和潜在过敏原的影响。

2.1 数据类型

随着技术的不断进步,食品质量分析已显著发展,利用传感器、方法和设备的多样性收集数据到数据集中。这些数据集涵盖了各种模态,包括表格数据、图像或图片数据、光谱数据和时间序列数据,每种数据都为分析师评估食品质量的关键方面提供了独特的优势。这些数据的复杂性和数量促使AI自动处理大型数据集并识别复杂模式,从这些多样化的数据中提取最大有用信息。

表格数据:表格数据允许系统和清晰地组织信息,这可以简化统计分析和数据管理。然而,集成相互关联的变量可能会引起复杂性。通过使用AI算法,可以探索这些数据集以识别不明显的相关性和变量之间的交互作用,从而实现高级预测分析。
图片数据:图片数据允许清楚和直观地可视化信息,促进复杂数据的交流和理解。它们能够识别食品中的小缺陷或瑕疵,如污渍或变形。此外,这些图像是若干非破坏性技术的结果,支持无需其他转换技术所需的化学试剂即可进行的可持续分析和监控。图片数据包括高光谱成像(HSI)、X射线成像和多光谱成像,所有这些都在食品质量领域得到了广泛应用。
光谱数据:光谱数据允许通过对不同波长发射、反射或吸收的电磁辐射进行分析,进行详细和精确的化学相互作用分析。这使得光谱数据成为检测被分析食品成分微小变化的高度准确工具,揭示传统方法可能无法显示的信息。像图片数据一样,光谱数据也是通过“绿色”非破坏性技术获得的。近红外(NIR)和拉曼光谱以及质子核磁共振( 1 H { }^{1} \mathrm{H} 1H NMR)等方法提供了与成像技术相当的高精度,但计算成本更低。
时间序列数据:时间序列数据能够连续和动态地监控随时间变化的各种因素。这些数据捕捉关键参数的时间变化,提供对生产链和分销链不同阶段可能出现的趋势和异常的详细见解。此外,环境传感器使用顺序测量来建立随时间变化的参考参数。

2.2 AI 方法

凭借广泛的预建库和经过验证的技术,研究人员可以适应各种AI方法来应对他们的具体挑战。此外,随着数据访问范围的扩大,数据分析师——如化学计量学家——可以利用AI方法和增强资源更有效地应用他们的技术。这种灵活性使他们能够找到更高效和简单的解决方案,以满足他们的数据和目标需求。
在分析的作品中,只有少数提议使用经典AI算法,如模糊逻辑 [22, 23]。虽然这些算法因其依赖于明确定义的规则而具有透明性的优势,但也需要对问题有深刻的理解和对逻辑框架的精确制定。
大量分析的文章集中在使用机器学习(ML)方法。线性回归(LR)算法因其有效性、简单性和完全透明性而常被使用 [24, 25]。同样,集成方法如随机森林(RF)[26, 27] 和极限梯度提升(XGBoost)[28, 29] 因其对离群值的鲁棒性和捕捉数据中复杂关系的能力而受到广泛青睐。尽管它们通常容易解释,但随着基础学习器数量的增加,其复杂性也会增加。一些研究使用了无监督的ML技术,如k-最近邻(kNN)[30] 和聚类 [31, 32],这些技术提供了透明且相对可解释的决策过程。支持向量机(SVMs)也是一种常用技术 [33, 34],尽管其决策过程更为复杂且难以解释。极限学习机(ELM)[35] 以其快速的学习速度而闻名,尽管其解释难度较大。
大多数分析作品利用深度学习(DL)技术,因为它们能够学习复杂模式并从高度复杂的数据中提取有价值的信息,如图像。神经网络(NNs),其中最广泛使用的模型之一,即使在非常复杂的问题上也能实现卓越的表现;然而,这也伴随着极难解释的代价。卷积神经网络(CNNs)是图像分析中最广泛使用的方法,因为它们在概括和提取有意义特征方面的有效性。通过修改其架构——如内部层或最终分类器——可以开发更专业的网络,如VGG或ResNet以提高鲁棒性 [36],MobileNet或EfficientNet用于轻量级应用 [37],或You Only Look Once模型(YOLO)用于对象检测 [38]。此外,生成或合成数据的DL模型,如生成对抗网络(GANs)[39]、Transformer [40] 和自编码器 [41],
img-1.jpeg

图2:展示了表达力或灵活性与可解释性之间的权衡。表达式模型,如基于DL的模型,能够达到更高的任务级性能,但往往很难解释。另一方面,较不复杂的模型,如LR,本质上是可解释的,但通常无法达到高的任务级性能。
尽管这种权衡在文献中广为人知,但它仍然是一个近似的经验法则,存在例外情况,例如视觉Transformer [44],尽管它们比CNN更具表现力,但由于注意力机制易于可视化,被认为是本质上更可解释的 [45]。

3 XAI 方法

在AI模型的背景下,可解释性和解释性尽管经常互换使用,但两者的意义略有不同,正如[42]所解释的那样。作者认为,解释性关注的是理解模型的内部运作,而可解释性则严格与模型做出的预测后提供的事后近似见解相关联。换句话说,解释性是模型的内在属性,而解释是在做出预测后生成的,无论模型是否可解释。
准确性与可解释性的权衡:如上所述定义的可解释性,通常被认为与模型的表现力或准确性相冲突 [43]。表现力,也称为灵活性,指的是模型可以学习的复杂模式的范围。LR通常被视为非常不灵活的模型,因为它只能学习预测因子之间的简单线性关系;因此,它的准确性在更复杂的问题上,如与图片数据相关的问题上,将相当有限。然而,线性关系在人类标准下是可以解释的:LR模型中的单个参数表示相应预测因子对响应的加性效应。这使得分析变得简单,例如分析模型中每个变量的重要性。
另一方面,高度表现力的模型如深度神经网络(Deep NNs)被视为复杂模型,因此通常被称为黑箱模型。尽管在非常复杂的问题上能达到高准确性,但往往很难获得这些模型为实现某一预测而学习的规则的解释。这种权衡可以在图2中看到,其中来自第2.2节描述的AI模型根据其表现力和可解释性进行定位。尽管这种权衡广为人知,但它仍是一个近似的经验法则,存在例外情况,例如视觉Transformer [44],尽管它们比CNN更具表现力,但由于注意力机制易于可视化,被认为本质上更具可解释性 [45]。
全局与局部XAI方法:定义XAI工具的另一个轴是方法的范围。如果工具探讨的是模型的整体属性,则称其范围为全局;相反,当工具研究模型在一个数据点周围的行为时,则称其范围为局部。以之前的LR例子为例,模型的系数可以被视为全局解释,因为它们定义了模型的全局行为,而不考虑特定的数据点。另一方面,作为一个局部解释的例子,我们可以考虑在图像分类上下文中使用的特征归因。特征归因指识别对产生预测贡献最大的变量的动作。在图像分类的情况下,可能有兴趣引导特定图片被分类为某个类别的关键像素;这是局部解释的一个例子,因为我们只获得了模型在当前图像上的行为知识,

2 { }^{2} 2 在这种特定情况下,我们使用准确性作为通用术语,代表模型执行其设计任务的性能。
而没有试图推断模型的全局属性。在神经网络(NNs)的情况下,往往很难识别这样的全局规则来解释预测;因此,通常更倾向于局部解释 [46]。尽管局部解释的范围有限,但它们可以用来推导模型的全局信息,例如在 [46] 和 [47] 的工作中。
模型无关与模型特定的XAI方法:XAI工具的最后一个属性是其对有限类别模型的特定性。模型无关的工具是指由于其构建方式可以应用于任何AI模型的XAI方法,而模型特定的工具则受限于有限类别模型。在前面提到的特征归因案例中,像LIME和SHAP这样的方法被认为是模型无关的;另一方面,CAM和Grad-CAM [48] 方法仅适用于分类的CNN,尽管后者已被扩展到其他NN架构,如视觉Transformer [49] 或其他任务,如回归 [50]。

3.1 解释类型

我们建议根据输出格式对XAI技术进行分类,无论是数值、基于规则、文本 3 { }^{3} 3、视觉还是混合,如图3所示。不同的情况可能需要不同的方法来阐明模式。
img-2.jpeg

图3:XAI技术提供的解释类型的表示,以及其关键优势的总结。

数值解释:数值解释定义为通过精确值、数字向量、矩阵或张量以紧凑格式传递信息,以突出对模型输出预测影响最大的输入属性或特征。
视觉解释:视觉解释使用图形工具来展示信息,通常通过热图、图表或其他可视化方式突出影响模型推理过程的具体数据区域。
基于规则的解释:基于规则的解释使用模式化、逻辑格式,通常以“IF…THEN”语句加上AND/OR运算符的形式表达输入特征及其激活值的组合。这些规则采用符号逻辑,这是一种原始符号及其组合的形式化系统。
混合解释:混合解释结合了多种格式,如视觉、文本和数值解释,以利用它们各自的优势并克服单独使用时的弱点。

4 解释食品安全

我们观察到大多数XAI技术在食品安全领域的应用集中在提供视觉解释,如表1所示。原因是研究人员频繁使用图片数据来研究影响食品和攻击植物的昆虫疾病。这些图像通常使用CNN进行处理,CAM [9] 和衍生的XAI技术广泛应用于解释它们。

表1:总结在第4节中调查的将XAI应用于食品安全的研究,根据其数据类型和解释类型(标记为“Expl. type”)。

工作数据类型解释类型
[ 36 , 51 , 52 , 40 , 53 , 54 , 55 , 35 , 56 [36,51,52,40,53,54,55,35,56 [36,51,52,40,53,54,55,35,56,图片视觉
57 , 58 , 59 , 60 , 61 , 62 , 63 , 64 , 38 , 65 57,58,59,60,61,62,63,64,38,65 57,58,59,60,61,62,63,64,38,65,
66 , 67 , 68 , 69 , 70 , 71 , 72 , 73 , 74 , 75 66,67,68,69,70,71,72,73,74,75 66,67,68,69,70,71,72,73,74,75,
76 , 77 , 78 , 79 , 80 , 81 , 82 , 83 , 84 , 85 76,77,78,79,80,81,82,83,84,85 76,77,78,79,80,81,82,83,84,85,
86 , 87 , 88 , 89 , 90 , 91 , 92 , 93 , 94 , 95 86,87,88,89,90,91,92,93,94,95 86,87,88,89,90,91,92,93,94,95,
96 , 97 , 98 , 99 , 100 , 101 ] 96,97,98,99,100,101] 96,97,98,99,100,101]
[102]光谱视觉
[ 37 , 103 , 104 , 105 , 106 ] [37,103,104,105,106] [37,103,104,105,106]图片混合
[24]表格混合

4.1 视觉解释

许多使用图片数据的研究专注于检测玉米、大米和小麦等主粮作物的植物疾病,展示了在食品供应中准确识别疾病的重要性。[55] 开发了一种迁移学习方法,增强了MobileNetV2与CAM以诊断玉米和大米中的植物疾病。[66] 和 [64] 使用CNN模型检测玉米和花生疾病,应用通道注意和剪枝技术以改进特征提取。同样,[36] 应用CNN与Grad-CAM区分健康和感染的小麦,有效识别受影响区域。[52] 引入C-DenseNet,一种修改后的CNN模型,以分级小麦条锈病严重程度,使用Grad-CAM++ [107] 进行验证。[56] 开发了一种基于YOLOv5s的模型,结合MobileNetV3和C3Ghost模块检测小麦中的赤霉病(FHB),使用Grad-CAM。此外,应对不同疾病图像的复杂性,[37] 改进了带有位置软注意机制的MobileNetV2和CAM,展示了其在不同条件下识别作物疾病的实用性。
相比之下,一些研究探索了替代作物和农业部门。[72] 使用高分辨率视频数据和基于CNN的目标检测模型监控山核桃树健康,重点是黄萎病,通过Grad-CAM验证以突出关键冠层特征。[54] 引入T-RNet,一种嵌入Transformer的ResNet模型,用于木薯叶疾病检测,通过Grad-CAM可视化展示对相关区域的关注。
其他研究集中在番茄和土豆疾病检测上,采用不同模型以改进早期和准确识别。[74] 开发了一种基于EfficientNet的模型,从分割叶片图像分类番茄疾病,使用ScoreCAM [108] 进行早期检测验证。类似地,[68] 结合InceptionNet和U-Net,两个CNN,用于番茄疾病检测和分割,通过ScoreCAM验证。[83] 提议结合DenseNetMini与梯度乘积优化和Grad-CAM的集成模型,以实现可解释的植物叶片疾病检测,特别针对番茄和苹果植物。[84] 引入DVTXAI,一种与SHAP集成的深度视觉Transformer模型,用于识别番茄和土豆植物中的感染。[85] 开发ExE-Net,一种可解释的集成网络,用于土豆叶片疾病分类,整合各种基于CNN的模型与XAI技术,包括LIME、SHAP和Grad-CAM,以提高土豆疾病识别的准确性和可解释性。

同样,[88] 将LIME和Grad-CAM应用于基于DenseNet的模型,用于分类番茄叶片疾病。此外,[99] 提议使用结合数据增强和重加权技术的MobileNetV2模型,用于在不平衡数据集上准确分类土豆叶片疾病,使用Grad-CAM解释模型预测。[87] 引入一种新颖的基于显著性的XAI方法,使用扰动技术进行目标检测,迭代优化显著图以提高ResNet模型的可解释性,同时保持高精度分类土豆疾病。最后,[101] 提出了一个番茄健康监测系统,集成YOLOv8用于检测和MobileNetV3用于实时计数和分类疾病,使用Grad-CAM++解释模型预测。值得注意的是,基于CAM的技术有助于模型验证并突出具有特定纹理和颜色模式的区域。
一组研究针对树木和水果疾病。[75] 应用CNN模型使用PlantVillage数据集检测葡萄疾病,通过Grad-CAM验证。[60] 引入GLD-Det,一种基于MobileNet的模型,用于检测番石榴叶片疾病,通过Grad-CAM确认用于实时移动应用。这是一个重要的基于CAM的解决方案实例,改进样本预测解释。[51] 探索VGG、GoogLeNet和ResNet等CNN模型在水果叶片分类中的可解释性,展示ResNet结合Grad-CAM在特征可视化中的优越性能。在另一个例子中,[69] 将新模块集成到CNN架构中,用于细粒度作物疾病分类,通过Grad-CAM确认模型对相关特征的关注。

除了疾病检测,几项研究将注意力转向农业中的害虫检测和害虫管理。[78] 评估带MobileNetV3骨干的Faster-RCNN进行害虫识别,通过GradCAM验证。[76] 改进害虫分类模型使用遗传算法,通过GradCAM可视化确认模型效率。[79] 开发ExquisiteNet,一种用于害虫识别的深度学习模型,通过Grad-CAM验证。此外,[77] 使用各种XAI技术为轻量级CNN在作物健康监测中提供详细的视觉解释。[35] 利用LIME与提出的I-LDD框架,借助ELM进行快速而强大的疾病分类在PlantVillage数据集上,伴随视觉解释突出患病叶片区域。这两篇文章展示了综合解决方案,利用多种XAI技术提供更有见地的解释。

一些研究扩展了XAI技术在农业以外的应用。[62] 应用Grad-CAM验证一种用于鱼类汞暴露分类的ML方法,支持超越农业的食品安全。[63] 引入EffiNet-TS,一种基于EfficientNetV2的模型,结合NN重建突出关键症状的图像,从而澄清决策过程。[59] 提议一种定制的EfficientNetB4模型,用于高精度分类辣椒叶片疾病,使用Grad-CAM验证。类似地,[58] 评估四种CNN模型的性能,EfficientNetB4在包含健康和患病植物叶片的数据库上表现最佳,通过Grad-CAM确认模型对关键疾病特征如铁锈孢子的关注。[73] 引入一种元学习方法用于植物疾病检测,通过任务激活映射解释,这是一种为本研究专门开发的基于CAM的技术。[61] 开发一种使用轻量级CNN的卷积集成网络,通过Grad-CAM验证。此外,[40] 使用Vision Transformer模型进行植物疾病分类,通过Grad-CAM确认模型对相关疾病特征的关注。

近期研究显著推进了DL模型在农业疾病检测中的移动设备部署。[38] 适应YOLOv8n模型用于实时小麦穗检测,针对移动设备优化。[71] 使用MobileNetV2检测番茄叶片疾病,强调其在实际应用中适合低端设备。[53] 提议CD-MobileNetV3模型用于识别玉米叶片疾病,证明其在移动使用中的效率。同样,[67] 应用轻量级ShuffleNetV2模型检测玉米种子疾病。这些研究通过Grad-CAM验证其模型用于移动平台上的实时部署,突出了移动优化模型在推进农业监测和管理中的日益重要作用。

在水果质量领域,有许多AI应用,尤其是那些涉及使用XAI以增强模型预测信任的应用。一个重要的案例是由[97]提出的,他们提出了一种基于多个深度学习模型的集成学习框架,用于水果植物疾病检测,将LIME作为额外工具用于结果评估。[86] 提出了一种方法,通过分析叶片图像使用EfficientNetB0分类各种香蕉疾病——包括Cordana、黑 Sigatoka、Pestalotiopsis和镰刀菌枯萎病——并通过Grad-CAM提高分类准确性和解释性。[91] 引入一种基于EfficientNetV2S和Grad-CAM的可解释AI方法,用于定位葡萄藤上的粉虱症状。[93] 提出LEViT,一种视觉Transformer模型,用于树叶片疾病分类,结合Grad-CAM确保可靠和可解释的结果。一个强调需要应用多种XAI技术以获得可靠结果的例子是[94],他们开发了一种基于VGG16的AI系统用于椰枣分类——能够识别疾病并评估果实成熟度——结合SHAP、LIME、Grad-CAM和Grad-CAM++确保结果解释性。[100] 提议一种改良的MobileNetV2模型,用于增强黄瓜叶片疾病分类,通过集成LIME确保结果解释性。[95] 致力于提高深度学习模型——具体为ResNet50模型——在柑橘疾病检测中的解释性,通过引入一种新型的图像分类模型无关局部解释器——多目标遗传算法解释器(MOGAE)。[96] 引入一种基于CNN的方法用于检测桑葚叶片疾病,使用MobileNetV3Small模型和Grad-CAM对齐专家评估的模型预测。重要的是,基于CAM的技术有助于模型验证并突出具有特定纹理和颜色模式的区域。
一系列研究针对树木和水果疾病。[75] 应用CNN模型使用PlantVillage数据集检测葡萄疾病,通过Grad-CAM验证。[60] 引入GLD-Det,一种基于MobileNet的模型用于检测番石榴叶片疾病,通过Grad-CAM确认用于实时移动应用。这是一个重要的基于CAM的实时预测解决方案,改善样本预测解释。[51] 探索VGG、GoogLeNet和ResNet等CNN模型在水果叶片分类中的可解释性,展示ResNet结合Grad-CAM在特征可视化中的优越性能。在另一个例子中,[69] 将新模块集成到CNN架构中,用于细粒度作物疾病分类,通过Grad-CAM确认模型对相关特征的关注。

除了疾病检测,一些研究将注意力转向农业中的害虫检测和害虫管理。[78] 评估带MobileNetV3骨干的Faster-RCNN进行害虫识别,通过GradCAM验证。[76] 改进害虫分类模型使用遗传算法,通过GradCAM可视化确认模型效率。[79] 开发ExquisiteNet,一种用于害虫识别的深度学习模型,通过Grad-CAM验证。此外,[77] 使用各种XAI技术为轻量级CNN在作物健康监测中提供详细的视觉解释。[35] 利用LIME与提出的I-LDD框架,结合ELM进行快速而稳健的疾病分类在PlantVillage数据集上,伴随视觉解释突出患病叶片区域。这两篇文章展示了复合解决方案,利用多种XAI技术提供更有见地的解释。

一些研究扩展了XAI技术在农业以外的应用。[62] 应用Grad-CAM验证一种用于鱼类汞暴露分类的ML方法,支持超越农业的食品安全。[63] 引入EffiNet-TS,一种基于EfficientNetV2的模型,结合NN重建突出关键症状的图像,从而澄清决策过程。[59] 提议一种定制的EfficientNetB4模型用于高精度分类辣椒叶片疾病,使用Grad-CAM验证。同样,[58] 评估了四个CNN模型的性能,EfficientNetB4在包含健康和患病植物叶片的数据集上表现最佳,通过Grad-CAM确认模型对关键疾病特征如锈病孢子的关注。[73] 引入了一种元学习方法用于植物疾病检测,通过任务激活映射解释,这是一种为本研究专门开发的基于CAM的技术。[61] 开发了一种卷积集成网络,使用轻量级CNNs如MobileNetV2,通过Grad-CAM验证。此外,[40] 使用Vision Transformer模型进行植物疾病分类,通过Grad-CAM确认模型对相关疾病特征的关注。

最近的研究显著推进了深度学习(DL)模型在农业疾病检测中的移动设备部署。[38] 适应YOLOv8n模型用于实时小麦穗检测,针对移动设备优化。[71] 使用MobileNetV2检测番茄叶片疾病,强调其在实际应用中适合低端设备。[53] 提议CD-MobileNetV3模型用于识别玉米叶片疾病,证明其在移动使用中的效率。同样,[67] 应用轻量级ShuffleNetV2模型检测玉米种子疾病。这些研究通过Grad-CAM验证其模型用于移动平台上的实时部署,突出了移动优化模型在推进农业监测和管理中的日益重要作用。

有许多AI在水果质量领域的应用,特别是那些涉及使用XAI以增强模型预测信任的应用。一个重要的案例是由[97]提出的,他们提出了一种基于多个深度学习模型的集成学习框架,用于水果植物疾病检测,将LIME作为额外工具用于结果评估。[86] 提出了一种方法,通过分析叶片图像使用EfficientNetB0分类各种香蕉疾病——包括Cordana、黑 Sigatoka、Pestalotiopsis和镰刀菌枯萎病——并通过Grad-CAM提高分类准确性和解释性。[91] 引入一种基于EfficientNetV2S和Grad-CAM的可解释AI方法,用于定位葡萄藤上的粉虱症状。[93] 提出LEViT,一种视觉Transformer模型,用于树叶片疾病分类,结合Grad-CAM确保可靠和可解释的结果。一个强调需要应用多种XAI技术以获得可靠结果的例子是[94],他们开发了一种基于VGG16的AI系统用于椰枣分类——能够识别疾病并评估果实成熟度——结合SHAP、LIME、Grad-CAM和Grad-CAM++确保结果解释性。[100] 提议一种改良的MobileNetV2模型,用于增强黄瓜叶片疾病分类,通过集成LIME确保结果解释性。[95] 致力于提高深度学习模型——具体为ResNet50模型——在马铃薯叶片疾病分类中的解释性,通过引入一种新型的图像分类模型无关局部解释器——多目标遗传算法解释器(MOGAE)。[96] 引入一种基于CNN的方法用于检测桑葚叶片疾病,使用MobileNetV3Small模型和Grad-CAM对齐专家评估的模型预测。重要的是,基于CAM的技术有助于模型验证并突出具有特定纹理和颜色模式的区域。

一组研究针对树木和水果疾病。[75] 应用CNN模型使用PlantVillage数据集检测葡萄疾病,使用Grad-CAM验证。[60] 引入GLD-Det,一种基于MobileNet的模型用于检测番石榴叶片疾病,通过Grad-CAM确认用于实时移动应用。这是CAM解决方案在实时预测中改进样本预测解释的一个重要例子。[51] 探索VGG、GoogLeNet和ResNet等CNN模型在水果叶片分类中的可解释性,展示ResNet结合Grad-CAM在特征可视化中的优越性能。在另一个例子中,[69] 将新模块集成到CNN架构中,用于细粒度作物疾病分类,通过Grad-CAM确认模型对相关特征的关注。

除了疾病检测,几项研究转向关注害虫检测和农业中的害虫管理。[78] 评估了带MobileNetV3骨干的Faster-RCNN模型用于害虫识别,通过GradCAM验证。[76] 改进害虫分类模型使用遗传算法,通过GradCAM可视化确认模型效率。[79] 开发ExquisiteNet,一种用于害虫识别的深度学习模型,通过Grad-CAM验证。此外,[77] 使用各种XAI技术为轻量级CNN在作物健康监测中提供详细的视觉解释。[35] 利用LIME与提议的I-LDD框架,结合ELM进行快速而稳健的疾病分类在PlantVillage数据集上,伴随视觉解释突出患病叶片区域。这两篇文章展示了复合解决方案,利用多种XAI技术提供更有见地的解释。

一些研究扩展了XAI技术在农业以外的应用。[62] 应用Grad-CAM验证一种ML方法用于鱼类汞暴露分类,支持超越农业的食品安全。[63] 引入EffiNet-TS,一种基于EfficientNetV2的模型,结合神经网络重建图像以突出关键症状,从而澄清决策过程。[59] 提议一种定制的EfficientNetB4模型用于高精度分类辣椒叶片疾病,通过Grad-CAM验证。类似地,[58] 评估四种CNN模型的性能,EfficientNetB4在一个包含健康和患病植物叶片的数据集上表现最佳,通过Grad-CAM确认模型对关键疾病特征如铁锈孢子的关注。[73] 引入一种元学习方法用于植物疾病检测,通过任务激活映射解释,这是一种为本研究专门开发的基于CAM的技术。[61] 开发了一种卷积集成网络,使用轻量级CNNs如MobileNetV2,通过Grad-CAM验证。此外,[40] 使用Vision Transformer模型进行植物疾病分类,通过Grad-CAM确认模型对相关疾病特征的关注。

最近的研究显著推进了深度学习(DL)模型在农业疾病检测中的移动设备部署。[38] 适应YOLOv8n模型用于实时小麦穗检测,针对移动设备优化。[71] 使用MobileNetV2检测番茄叶片疾病,强调其在低功耗设备上的适用性。[53] 提议CD-MobileNetV3模型用于识别玉米叶片疾病,展示其在移动环境下的效率。同样,[67] 应用轻量级ShuffleNetV2模型检测玉米种子疾病。这些研究通过Grad-CAM验证其模型用于移动平台上的实时部署,突出显示了移动优化模型在推进农业监控和管理中的日益增长作用。

在水果质量领域,有许多AI应用,尤其是涉及使用XAI来增强模型预测可信度的应用。[97] 提出了一种基于多个深度学习模型的集成学习框架用于水果植物疾病检测,结合所有模型中的LIME作为一种额外工具进行结果评估。[86] 提出了一种方法,通过分析叶片图像使用EfficientNetB0来分类各种香蕉疾病——包括Cordana、Black Sigatoka、Pestalotiopsis和Fusarium Wilt,并通过Grad-CAM提升分类准确性和解释性。[91] 引入了一种基于EfficientNetV2S和Grad-CAM的可解释AI方法,用于定位葡萄藤上的霉病症状。[93] 提出了LEViT,一种视觉Transformer模型,用于树叶片疾病分类,结合Grad-CAM确保可靠和可解释的结果。一个强调需要应用多种XAI技术以获得可靠结果的例子是[94],他们开发了一个基于VGG16的AI系统,用于椰枣分类——能够识别疾病并评估果实成熟度——结合SHAP、LIME、Grad-CAM和Grad-CAM++。[100] 提议了一种改良的MobileNetV2模型,用于增强黄瓜叶片疾病分类,确保通过整合LIME实现结果解释性。[95] 目标是改善深度学习模型——特别是ResNet50模型——在柑橘疾病检测中的解释性,通过引入一种新颖的模型无关本地解释器,即基于图像分类的多目标遗传算法解释器(MOGAE)。[96] 引入了一种基于CNN的方法用于检测桑葚叶片疾病,使用MobileNetV3Small模型和Grad-CAM使模型预测与专家评估保持一致。

更近期的应用集中在农作物上,农作物是人类生存的主要来源,突显了AI和XAI在确保粮食安全方面日益增长的作用。[70] 开发了MaizeNet,一种结合聚类进行玉米作物图像分割和分类的CNN框架。Grad-CAM被用来解释模型,提供严重程度评估和作物损失估计。[65] 使用CNN量化由高温引起的稻谷白垩化,通过Grad-CAM定位受影响区域。[57] 提出了基于卷积方法的稻谷疾病检测方法,即使在复杂场景下,Grad-CAM也凸显了模型的有效性。[81] 提出了一种新的DL模型,结合DenseNet进行特征提取与SVM分类健康和患病甘蔗植株,整合LIME以增强信任和可用性。[82] 和 [98] 应用LRP增强VGG16模型用于识别作物叶片疾病,旨在提高性能。[89] 开发了一种基于深度迁移学习的框架,用于诊断稻叶疾病,整合各种DL模型并结合Grad-CAM提升系统的可靠性供农民使用。[90] 将LIME整合到基于EfficientNet的模型中,解决植物疾病分类中的信任问题。由于玉米条纹病对玉米作物构成严重威胁,[92] 引入了一种基于CNN的框架用于诊断,结合SHAP和LIME。最后,[80] 提出了一种比较框架,结合贝叶斯优化进行超参数调整,跨越基于CNN的模型——InceptionNet、MobileNet、ResNet和RegNet——诊断稻谷植物疾病,利用LIME提升模型行为的解释性。

考虑到光谱数据,[102] 开发了一种结合HSI和DL的方法来评估小麦籽粒中赤霉病感染水平,提取反射光谱并选择最佳波长。残差注意力CNN分类感染程度,区分不同感染水平的特征,正如Grad-CAM所确认的那样。尽管光谱数据对食品安全至关重要,但其视觉解释的使用并不显著。

4.2 混合解释

几项研究提出了使用图片数据解决食品安全问题的DL方法。然而,它们应用了不同的XAI技术,导致了解释类型的不同。
最近的DL进展集中于通过应用各种XAI技术来增强食品安全的理解模型决策。[109] 探索了CNNs在植物疾病诊断中的应用,利用XAI方法如LIME、Grad-CAM和SHAP提供视觉和混合解释。[104] 引入了一种新的工作流程,使用ResNet18进行害虫识别,包括将图像分割成有意义的概念并通过加权有向图和概念重要性解释决策,提高了透明度但指出了解释生成的复杂性。[103] 结合DL与语义网技术进行木薯疾病检测,使用视觉Transformer和整合环境数据的语义模型。这种方法实现了高准确率并引入了一种独特的解释方法,使用为最终用户定制的知识图谱。[106] 提议同时使用来自LIME的视觉和数值解释,以提供局部特征重要性,增强基于CNN的模型在分类水稻作物疾病时的透明度。[105] 提出了PLD-Det,一种改进的基于YOLOv7的实时植物叶片疾病检测模型,结合SHAP解释以提高透明度,使农民更容易理解预测。

关于表格数据,[24] 引入了一种新颖的模型,通过结合特征选择、基于LIME的XAI解释和LR分类达到 90.0 % 90.0 \% 90.0% 的分类准确率。

5 解释真实性和可追溯性

通过解决食品供应链的真实性和可追溯性问题,我们确定了XAI技术更广泛的应用。这一领域成为XAI在食品相关任务中的第二大重要应用。表2总结了本节调查的工作。

表2:根据数据类型和解释类型(标记为“Expl. type”)总结在第5节中调查的将XAI应用于真实性和可追溯性的研究。

工作数据类型解释类型
[ 110 , 111 , 112 , 113 , 114 , 115 , 116 , 117 , 118 , 119 , 120 ] [110,111,112,113,114,115,116,117,118,119,120] [110,111,112,113,114,115,116,117,118,119,120]图片视觉
[ 121 ] [121] [121]图片混合
[ 122 ] [122] [122]光谱视觉
[ 123 , 124 ] [123,124] [123,124]表格视觉
[ 33 , 125 , 126 , 127 , 28 , 128 , 129 , 130 , 131 , 132 , 133 , 134 , 135 [33,125,126,127,28,128,129,130,131,132,133,134,135 [33,125,126,127,28,128,129,130,131,132,133,134,135,表格数值
136 , 137 , 138 , 139 , 140 , 141 , 142 , 143 , 144 , 145 ] 136,137,138,139,140,141,142,143,144,145] 136,137,138,139,140,141,142,143,144,145]
[ 23 ] [23] [23]时间序列数值
[ 146 , 26 , 27 , 147 , 29 , 148 , 149 , 150 , 151 , 152 ] [146,26,27,147,29,148,149,150,151,152] [146,26,27,147,29,148,149,150,151,152]表格混合
[ 39 ] [39] [39]时间序列混合
[ 153 ] [153] [153]光谱混合

5.1 视觉解释

最近使用图片数据的研究推动了农产品品种可追溯性和真实性验证的进步。[115] 开发了一种CNN模型用于草药变异识别,使用Grad-CAM突出相关草药部分,忽略背景噪声。[114] 专注于使用ResNet模型进行玉米种子分类,而[116] 应用高光谱成像和深度学习分类杂交秋葵种子变异性。最近,[120] 提议应用各种CNN模型分类真菌种类,随后使用Grad-CAM解释模型预测。

除了可追溯性,几项研究解决了受损和掺假产品的识别问题。[110] 使用ResNet18模型检测发酵不良的可可豆,通过Grad-CAM提供解释性。[113] 开发了一种轻量级CNN,称为大豆网络,用于分类受损的大豆种子,通过Grad-CAM可视化提高质量检验效果。同时,[112] 引入CondimentNet,一种优化的ResNet18模型,利用Grad-CAM检测各种调味品中的掺假现象。
[111] 和 [117] 强调改进农业和食品生产过程以确保质量和可持续性。[111] 开发了BraeNet,一种修改后的ResNet分类器,使用2D和3D X射线成像检测布瑞本苹果内部褐变,演示了在线质量排序中放射学的实际应用。类似地,[117] 探讨了食品供应链优化,涵盖植物生长预测、节能冷藏和保质期识别,强化了过程改进在维持食品质量和安全性中的作用。
[119] 和 [118] 提议使用无人驾驶航空器(UAV)空中影像作为两个类似AI基础应用的主要图片数据源。[119] 探索了一种基于AI的可解释方法,用于使用UAV影像识别和绘制杂草和作物地图,应用U-Net进行分割以过滤噪声并提取关键区域,随后使用ViT进行分类。XAI技术如LRP和像素密度分析在分类过程中被应用以增强透明度。[118] 调查了使用CNN模型应用于UAV空中影像捕捉后熟阶段的水稻产量预测的最佳输入图像条件,通过XAI技术如基于梯度的特征重要性分析评估结果。
[122] 提议使用光谱数据解决可追溯性问题,开发了一种快速、非破坏性方法,用于识别掺入色素和固化剂的假冒牛肉。应用Grad-CAM到光谱数据改进了该方法,通过生成视觉解释突出影响模型决策的关键波长。

使用表格数据,[123] 突出了精确作物产量预测在应对气候变化、人口增长、土壤侵蚀和水资源减少带来的食品质量挑战中的重要性。回归模型通过激活图实现良好性能,用于可视化和分析驱动产量预测的特征,证明生长季节长度和温度、阳光等条件是关键因素。同样,[124] 提出了中国塔皮耶山地区农业干旱预测的ML框架,包括SHAP分析以视觉突出最影响干旱严重程度的气象因素。

5.2 数值解释

几项研究应用高级ML技术使用表格数据进行作物产量预测,整合多个数据源并使用SHAP进行解释性。[127] 展示了使用SHAP与AI模型进行气培数据分析的效果,通过融合多个传感器的数据。类似地,[125] 使用XGBoost和SVM分析影响水稻生产的因素,通过LIME验证模型决策。[28] 应用XGBoost进行大豆产量预测,SHAP突出近红外光和温度等关键因素。[126] 进一步探索大豆产量估算,强调植被指数的作用使用SHAP。
一些研究纳入卫星和气象数据以提高预测准确性。[129] 利用训练于多源数据的LSTM,应用综合梯度和SHAP识别关键因素如增强植被指数和温度。[128] 考察极端天气对作物产量的影响,揭示作物和地区之间的敏感性差异。
土壤水分含量也是农业管理中ML模型的重点。[131] 引入TPE-CatBoost,结合土壤湿度和环境因素,通过SHAP展示模型对环境变化的敏感性。[130] 使用TPE-GBDT绘制黄河三角洲的土壤水分分布图,识别关键变量如土壤质地和植被。[33] 应用SVM和SHAP突出数字土壤制图中的重要因素,加强地形和地质数据在有效农业管理中的整合。选择最适合的土壤的想法也由[142]探讨,他们通过分类不同土壤类型使用ML模型来提高作物质量,并应用SHAP突出影响模型决策的最重要特征。类似地,[136] 提出RF模型用于预测土壤肥力,使用SHAP突出决定肥力水平的各种物理化学土壤属性。
还存在大量关于追踪和分析环境条件以提高如大米、小麦和玉米等作物的生产和质量的研究,利用SHAP或LIME识别模型执行给定任务时使用的最具影响力特征。[132] 提出了一种ML模型用于作物预测,整合遗传算法进行超参数优化和RF进行分类,同时应用XAI技术如LIME和SHAP提高分类器解释性——最终支持农民优化农业规划,减少作物损失,提高生产力。[133] 提出了用于作物分类和产量预测的ML模型,利用XAI技术如LIME和特征重要性提高模型解释性。类似地,[141] 旨在通过使用生成算法优化DNN并使用LIME解释模型输出来提供准确的作物产量预测。[144] 提议一种方法,基于环境和土壤条件选择最优作物,利用径向基函数和SHAP。[135] 引入XAI-CROP,一种基于ML的作物推荐系统,通过包括LIME解释预测改进,设计用于通过分析土壤特性、历史作物表现和天气模式协助农民选择最优作物。一种类似的工具由[134]开发,他们使用各种ML模型推荐特定地区的最优作物,使用LIME和SHAP分析结果。[139] 旨在通过将显著图和SHAP分析整合到KNN模型中,增强AI驱动的作物产量预测的解释性。[138] 利用结合SHAP值的XGBoost模型,绘制并理解澳大利亚东部小麦产量受天气和土壤变量的影响。[140] 引入基于ML的回归方法以及XAI技术——SHAP和LIME——预测作物产量并评估气候变化对农业的影响。
最后,若干研究提出与上述讨论相似但适用于不同食品产品的应用。特别是,[137] 应用ML模型——具体为基于树的集成方法——以及LIME来根据图像纹理特征分类黑加仑粉末。[143] 提议使用基于ML的模型,例如随机森林和SHAP,通过贡献标准化咖啡分级,传统上依赖主观评价,以提高咖啡质量评估。[145] 考察了ANN和XAI技术——如特征重要性——的整合,以提高农食行业中的质量控制策略,特别关注牛奶质量分类。

5.3 基于规则的解释

真实性和可追溯性在基于规则的解释中尚未深入探索。[23] 强调了使用时间序列数据监控低成本、自动化和可解释灌溉系统的必要性。为此,他们提出了一种名为Vital的新系统,整合物联网传感器、数据管理平台和模糊规则基础决策支持系统,以实现灌溉自动化。该系统通过试点案例进行了评估,有效自动化了灌溉过程,监控和管理提供了水的开放田间安装。

5.4 混合解释

在[121]中,应用了各种XAI技术使用HIS增强了蜂蜜产品的真实性验证,通过使用图片数据解决了高维度和噪声相关的挑战。通过将多种XAI算法与CNNs整合,他们开发了一种波长选择方法以识别最有信息量的光谱带,有效减少了数据维度,特别是在根据植物来源分类蜂蜜时。

表格数据由[27]和[146]探索,应用各种XAI技术增强了农业分析中ML模型的解释性。[27] 开发了RF模型以评估生物物理、生物气候和社会经济因素对小麦、玉米和橄榄园土地使用的影响,使用特征重要性、PDP和LIME识别关键变量如排水密度、坡度和土壤类型。类似地,[146] 研究了无耕作对玉米产量的影响,使用ML和XAI方法确定关键生物物理和气候因素。[29]和[147]展示了当XAI技术与ML整合时,提供对农业扩张和产品质量评估的见解。[29] 应用XGBoost和SHAP分析牛油果前沿扩展,可视化关键环境和可达性因素。[147] 使用XGBoost与SHAP和PDP评估绿酒地区酒精饮料质量,识别影响产品质量的关键化学属性。[26] 使用RF模型与LIME考察长期气候变量和土壤属性对美国本土作物产量的影响。该研究识别了影响产量的关键环境因素,展示了XAI对理解复杂农业数据和支持利益相关者适应气候变化策略的价值。[149] 使用XGBoost和SHAP预测印度尼西亚年度棕榈油产量,分析十五个农气象变量,包括降雨量、雨天数量和土壤属性。[148] 提议了一种贝叶斯集成模型(BM)分析气候对作物产量的影响,有效地分离气候和技术影响并捕获非线性气候效应,实现高准确率和可解释结果。[150] 探讨了XAI技术——特别是LIME和SHAP——的应用,以增强应用于农业表格数据的基于ML模型的透明度和用户理解,聚焦于两个案例研究:小麦产量预测和葡萄酒生产中的葡萄产量预测。[151] 展示了XAI技术可以通过应用LIME、SHAP和What-If工具[154]到深度学习模型中增强食品欺诈检测的透明度。最后,[152] 提议应用各种
基于ML的模型,包括LR、CatBoost、k-NN和RF,用于自动分类Cammeo和Osmancik两种大米品种。为了确保透明度,采用了SHAP和个体条件期望(ICE)图[155]。

相比之下,使用光谱数据,[153] 研究了 1 H { }^{1} \mathrm{H} 1H NMR光谱以确定亚洲红辣椒粉的地理起源,采用ML、SVM和CNN模型与降维技术相结合。Grad-CAM和SHAP提供了对决策过程的见解,突出代谢物分布变化作为关键分类因素。这项研究展示了这些模型在更广泛的食品真实性验证中的潜在应用。

时间序列数据也被探索;例如,[39] 引入DeepFarm,一种用于在自然灾害和网络攻击等不确定性下管理和预测农业生产的DL框架。通过使用DL和因果推断,DeepFarm准确预测了美国各地区的作物产量,其中降水异常显著影响玉米产量。

6 解释营养价值

营养性质解释的研究显示出对使用图片数据进行视觉解释的主导依赖,很少使用基于规则的方法和偶尔出现的混合解释类型。表3总结了本节调查的研究。

表3:根据数据类型和解释类型(标记为“Expl. type”)总结在第6节中调查的将XAI应用于营养价值的研究。

工作数据类型解释类型
[ 156 , 157 , 158 , 159 , 160 , 161 , 162 , 163 , 164 , 165 , 166 , 167 , 168 [156,157,158,159,160,161,162,163,164,165,166,167,168 [156,157,158,159,160,161,162,163,164,165,166,167,168,图片视觉
169 , 170 , 171 , 172 , 173 , 174 ] 169,170,171,172,173,174] 169,170,171,172,173,174]光谱视觉
[ 175 ] [175] [175]表格数值
[ 176 , 30 , 32 , 177 , 178 ] [176,30,32,177,178] [176,30,32,177,178]图片基于规则
[ 31 ] [31] [31]表格基于规则
[ 179 ] [179] [179]表格混合
[ 25 ] [25] [25]

6.1 视觉解释

几项研究,使用图片数据,利用深度学习模型和XAI技术提升了食物分类和营养评估。[158] 应用弱监督VGG16为基础的CNN进行食物图像分割,使用实例激活图突出相关区域。[173] 引入宽切残差网络,结合切片卷积块以改进通过Grad-CAM可视化的营养评估。[169] 使用CNN和单目RGB图像估计蔬菜质量,而[172] 利用注意机制从社交媒体中分类未标注的食物图像。
一些研究专注于以用户为中心的食物推荐和识别方法。[171] 引入JDNet,一种基于CNN的移动食物识别模型,通过实例激活图验证。[170] 使用Grad-CAM增强少样本学习框架中的成分识别,而[174] 开发PiNet,一个多任务学习框架通过整合视觉和语义特征改进食物推荐。

优化食物识别以适应边缘设备也已被探索。[157] 开发了一种基于MobileNetV3的系统,结合以Grad-CAM++为核心的用户中心XAI框架进行膳食评估。[166] 提出了一种大数据驱动的方法进行营养评估,使用Grad-CAM可视化关键区域。[165] 应用ResNet34预测青苹果的机械性能,使用Grad-CAM显著图揭示生物物理组织变化。
[167]、[156] 和 [159] 对膳食评估和食物图像识别做出了贡献。[167] 引入ChinaFood100数据库,评估多种DL架构并使用Grad-CAM验证营养预测。[156] 探索东方食物识别使用VGG16和InceptionNet,通过LIME和Grad-CAM揭示模型不一致性。[159] 开发了一种膳食评估系统,结合ELM与SHAP指导的特征选择策略。
除了分类之外,一些研究整合了高级DL架构进行食品分析。[163]、[164] 和 [162] 开发了非破坏性评估和成分预测模型。[163] 提出了Swin-Nutrition模型,一种基于变压器的框架通过Grad-CAM验证。[164] 使用EfficientNetV1进行过敏原预测和
食物分类,通过Grad-CAM突出关键特征。[162] 引入CACLNet,通过解决类别不平衡和背景噪声问题,改善成分预测,通过Grad-CAM可视化。

多模态方法也被探索以增强营养评估和食物识别。[168]、[160] 和 [161] 结合了多样数据类型和学习技术。[161] 通过ResNet101改进营养评估,整合多尺度图像和深度数据特征。[160] 引入DPF-Nutrition,一种基于变压器的方法生成深度图以增强营养评估。[168] 开发MVANet,一种多视图注意力机制的CNN,结合成分和食谱语义,通过Grad-CAM验证用于医疗保健应用中的食物识别。

6.2 数值解释

光谱数据在[175]中被探索。作者使用可见NIR点光谱法估计葡萄品种在不同成熟阶段的糖分含量。应用了回归ML算法和CNN,通过XAI技术如投影中的变量重要性和Gini重要性验证模型并识别关键光谱特征。另一方面,表格数据在[30]、[176]、[32]和[178]中被讨论,应用ML技术应对各种食品相关挑战。[30] 使用XGBoost估计食品中的添加糖含量,通过SHAP增强消费者意识在没有强制标签的地区。[176] 开发了Flavonoid Astringency Prediction Database,使用ML模型如RF探索分子结构与风味特性的关系。同样,[32] 应用ML区分储存期间的胡椒香料,使用SHAP识别关键有机化合物。[178] 开发了一种基于XGBoost的模型,使用分子指纹相似性预测药物-食物相互作用,通过SHAP提供与临床应用和饮食计划相关的特征见解。[177] 提出了一种基于图的ML方法预测配方试验结果,旨在减少实验室实验、材料浪费和食品设计中的开发时间。为了增强解释性,他们应用了GNNExplainer [180],一种专为图神经网络定制的全局解释方法。

6.3 基于规则的解释

只有两项显著研究应用XAI技术在营养值背景下生成基于规则的解释。[31] 利用图片数据提出一种基于用户社区偏好的有效可解释食品推荐系统。基于规则的可解释性方法根据用户画像将每张图片分配到适当的饮食类别,支持个性化膳食推荐。[179] 提出了一种无需编码的方法,用于开发预测酚类化合物抗氧化活性的预测模型,利用基于决策树的算法和概念密度泛函理论(CDFT)描述符。所得到的模型通过从分子特征派生的明确、可解释的如果-那么规则实现了高准确率和完全可解释性。

6.4 混合解释

表格数据在[25]中被探索,介绍了Taste Peptide Docking Machine,一种用于预测肽的鲜味和苦味的计算框架。该框架整合了机器学习算法与分子表示方案,包括对接分析、分子描述符和分子指纹。应用SHAP和LIME以增强解释性,提供对影响味道预测的关键分子特征的见解。

7 解释感官特性

感官特性对于质量控制极为重要,导致了广泛使用旨在模仿人类感官的传感器。其中,光谱设备——在行业中常用且已确立——提供了丰富的信息,表明了XAI技术的潜在应用。然而,观察到大多数研究集中在图片数据和视觉解释上,迄今为止只有两篇工作涉及光谱数据的可解释性。在表4中,我们总结了本节调查的研究。

表4:根据数据类型和解释类型(标记为“Expl. type”)总结在第7节中调查的将XAI应用于感官特性的研究。

工作数据类型解释类型
[ 181 , 182 , 183 , 184 , 185 , 186 , 187 , 41 , 188 , 189 , 190 , 191 , 192 ] [181,182,183,184,185,186,187,41,188,189,190,191,192] [181,182,183,184,185,186,187,41,188,189,190,191,192]图片视觉
[ 193 , 194 ] [193,194] [193,194]光谱视觉
[ 195 , 196 , 197 ] [195,196,197] [195,196,197]表格数值

7.1 视觉解释

这些研究表明,在水果完整性的评估中,深度学习模型和XAI技术在图片数据上的应用取得了进展。[41] 使用X射线成像和DL方法,包括自动编码器和CNN,进行深层异常检测以发现内部缺陷如褐变和空洞,热图增强了解释性。[184] 引入MBNet,一种基于CNN的模型,利用多摄像头的感官数据进行梨的评估。[183] 应用UNet与合成数据进行梨内部缺陷分割,通过Grad-CAM热图验证。[188] 使用DenseNet201进行水果质量分类,Grad-CAM确认其对相关特征的关注。[181] 研究使用HSI和CNN检测李子瘀伤,Grad-CAM可视化验证模型预测。
食物新鲜度评估也受益于DL和HSI。[186] 开发了一种基于VGG16的模型,使用智能手机图像分类虾的新鲜度,使用Grad-CAM确认推理区域。同样,[182] 使用比色传感器和RGB图像监测三文鱼新鲜度,Grad-CAM揭示CNN优先考虑传感器数据而非视觉纹理,强调气味在新鲜度检测中的作用。
除了水果,谷物完整性也通过XAI方法进行了探索。[187] 在EfficientNet-B3DAN模型中应用Grad-CAM检测稻谷胚芽完整性,确认模型对相关特征的关注。[185] 地址作物产量估算问题,通过开发基于Inception-ResNet的回归模型进行叶计数,处理单子叶植物的遮挡。Grad-CAM分析确认其对叶尖的关注,验证了在高粱和玉米数据集上的有效性。[191] 通过使用经Grad-CAM验证的MobileNetV2模型增强作物分类,评估西红柿的视觉标准质量,将其分类为受损、陈旧、成熟和未成熟。产品新鲜度主题也在[190]、[189]、[192]中探讨。[190] 引入了一种基于DL的模型,将肉类新鲜度分类为新鲜、半新鲜和腐败类别,结合Grad-CAM++支持透明决策。[189] 提出了一种结合LIME的InceptionV3模型,高效且透明地分类鸡肉新鲜度,当与机器人臂集成时,增强了家禽加工中的自动化和食品安全。[192] 利用基于CNN的模型预测冷藏条件下拍摄的海鲷眼睛和鳃图像的质量——分为新鲜、适中和腐败——结合LIME和Grad-CAM实现模型解释性。
与前一项研究不同,两项研究使用XAI技术分析光谱数据以解决感官特性问题。[193] 开发了一种CNN模型,使用肌红蛋白数据和反射光谱分类牛肉新鲜度,达到了高F1分数。Grad-CAM突出关键波长区域,确认肌红蛋白在新鲜度分类中的重要性。该方法表现出对环境因素的强大鲁棒性,表明了强大的工业潜力。同样,[194] 使用表面增强拉曼光谱和基于CNN的双分支宽核网络分类细菌信号。

7.2 数值解释

三项工作针对感官特性,目标是通过数值解释解释模型输出,尽管它们的方法和应用基于表格数据有所不同。[195] 集中于预测公猪异味,一种在雄性猪肉中发现的不愉快的味道和气味。使用基于树的集成模型CatBoost,作者实现了峰值性能。SHAP分析识别了与公猪异味相关的关键因素,包括饲料类型、通风系统、药物治疗和等待时间。[196] 开发了DL模型以分类甜、苦和鲜味分子,采用DNN与分子描述符和图NN,达到相似的准确率。SHAP分析被应用于解释DNN预测,揭示关键分子结合特性。[197] 开发了一种基于各种回归模型的ML方法,包括XGBoost和随机森林,结合特征重要性分析,预测乳制品矩阵中的香气分配并支持食品改革努力。

8 解释可持续性和健康性

在可持续性和健康性研究中观察到了数据类型和解释方法的平衡使用,图片和表格数据的代表比例相等,还有使用时间序列数据的一项研究。表5总结了本节调查的研究。

8.1 视觉解释

本节中的研究使用Grad-CAM作为一种XAI技术,确认了其在利用图片数据解释可持续性和健康性问题解决方案时的广泛应用。[198] 使用结合特征级联分类器的CNN实现了猪脸识别83%的准确率。他们使用Grad-CAM验证模型专注于关键面部特征,提供了一种成本效益高的动物识别替代方案,有助于改善福利和非侵入性动物管理。
表5:根据数据类型和解释类型(标记为“Expl. type”)总结在第8节中调查的将XAI应用于可持续性和健康性的研究。

工作数据类型解释类型
[ 198 , 199 , 200 , 201 , 202 , 203 ] [198,199,200,201,202,203] [198,199,200,201,202,203]图片视觉
[ 204 , 205 , 206 , 207 , 208 , 209 , 210 , 211 ] [204,205,206,207,208,209,210,211] [204,205,206,207,208,209,210,211]表格数值
[ 34 ] [34] [34]时间序列数值
[ 22 ] [22] [22]表格基于规则
[ 193 ] [193] [193]混合

这项研究为动物识别领域做出了贡献,改善了福利和非侵入性动物管理实践。[201] 使用基于UAV的RGB影像的AlexNet CNN模型预测牧草生物量,达到12.98%的平均绝对误差,Grad-CAM确认模型准确识别相关区域用于生物量预测。[200] 提出一种基于改进MobileNetV3模型的CNN方法检测水稻发育阶段,准确率达到91.30%。Grad-CAM显示模型有效识别发育阶段,展示了低成本工具在实时农业监测中的潜力。[199] 引入MSANet,这是一种结合多尺度注意力和CNN层的模型,用于水果识别。Grad-CAM用于解释模型决策,确保有效识别特征以实现跨应用的鲁棒水果分类。这项工作通过自动化水果检测推进了废物减少,促进环境可持续性。同样,[203] 应用Vision Transformer (ViT) 模型进行植物幼苗分类,并使用注意力热图提供对模型决策过程的见解。最后,[202] 开发了一种基于CNN的系统作为自动评估农业喷洒器精度的方法,通过检测喷洒沉积物消除手动追踪剂或水敏感纸张的需求。该研究还采用了一个XAI管道——具体是Grad-CAM和Grad-CAM++——来解释CNN的决策过程,揭示分类中使用的空间过滤方法。

8.2 数值解释

这些研究探索了ML和XAI技术在健康、食品和农业领域的应用,使用表格数据。[205] 使用随机森林(RF)模型,通过SHAP值评估富含酚类的橄榄油对高胆固醇血症个体心血管代谢健康的影响。研究发现,富含酚类的橄榄油显著减少了与心血管风险相关的血清代谢物,表明其作为治疗心血管代谢疾病的可能性。[204] 预测口服食物挑战(OFC)结果以诊断食物过敏,Random Forest和Learning Using Concave and Convex Kernels模型在识别鸡蛋、花生和牛奶过敏方面达到了高准确率。SHAP分析突出关键临床因素,如免疫球蛋白E水平,作为OFC结果的重要预测指标。[206] 结合基因组和环境数据,使用先进的DL框架预测小麦产量。

DeepLift [212] 分析显示环境因素比遗传因素更具影响力,强调了整合两种数据类型对作物品种开发的重要性。[211] 将ML和DL模型——包括SVM、RF和神经网络——与LIME和SHAP结合,为作物产量预测提供了透明且高效的解决方案,重点在于自动化农业过程并促进可持续性。[209] 利用从十八头奶牛通过加速度计和压力传感器收集的数据,使用ML技术结合LIME和SHAP预测奶牛行为,将行为分类为其他行为、反刍和饮水/进食。[207] 应用RF模型通过基因型数据预测杏仁壳分,SHAP分析提供了影响壳分的遗传标记的见解,从而支持知情的育种策略。[208] 提议使用一种传感农业机器人,收集温度、湿度和紫外线指数等数据,通过监控环境条件随时间变化自动预测桑葚植物疾病,利用LightGBM进行预测和SHAP提高解释性。最后,[210] 引入了一种实时灌溉管理系统用于稻田,利用混合和集成特征提取方法(HyEn-X)结合基于联邦学习的框架,实现分散式学习以进行本地化决策同时保护数据隐私;使用SHAP增强模型解释性。

考虑时间序列数据,[34] 提出了几种ML模型,从群体级别的重量数据预测个体猪的生长轨迹,减少对传统昂贵的射频识别跟踪的依赖。随机森林模型表现最佳,平均每头猪的均方根误差为2.26公斤。SHAP分析突出体重和时间差异作为关键预测因子,支持ML作为成本效益高的生长估算替代方案。

8.3 基于规则的解释

表格数据在[22]中被探讨,作者提出一个系统,利用物联网数据,涵盖作物类型、土壤特性和天气条件——以监控农业环境并提醒农民采取必要的
行动以保持最佳作物条件。这种方法基于模糊逻辑并与ML算法集成,检测由安全漏洞或硬件故障引起的数据异常。

结果表明,该系统通过实时监控和基于物联网见解的决策有效增加了作物产量。模糊逻辑框架增强了系统的可解释性,使其对农民用户友好。在玉米上的测试显示了高可解释性、准确的异常检测和触发适当行动的可靠性。

8.4 混合解释

在可持续性和健康性领域,只有一项研究结合XAI技术和表格数据。[213] 引入AgriUXE,一个数字平台,将XAI与多模态数据结合,以增强智能农业中的决策,弥合基于AI的农业解决方案与农民理解之间的差距,提供基于物联网传感器数据、遥感和预测模型的定制解释。作者在一个葡萄栽培案例研究中展示了一种有效的方法,将各种基于AI的方法与多种XAI技术相结合,包括LIME和SHAP。

9 比较与洞察

图4展示了按年份和数据类型的科学文章数量。这里可以注意到近年来XAI的使用增加,反映出对该领域兴趣和应用的显著增长。数据显示了意识的显著进步,反映了食品行业中对AI模型透明度和解释性的重视日益增加。早期研究和大多数研究主要集中在图片数据上,对表格数据的关注逐渐增加。值得注意的是,广泛用于物理化学分析的时间序列和光谱数据尚未被XAI技术充分探索。
img-3.jpeg

图4:按出版年份和数据类型划分的本文调查论文分布。大多数文章发表于2020年之后,说明将XAI应用于食品质量主题是一个相对较新且不断发展的学科。

在食品质量领域,最近通过AI作为一种强大的创新工具出现了显著的增长和发展机会,正如[214]所强调的那样。这项工作概述了各种可用和应用于食品质量的AI技术,描述了几项提出解决本审查中讨论的挑战的显著研究。
文献中的许多研究集中于识别和分析AI在食品质量中的关键应用[4],以及相关领域如食品加工[215],或试图改善整个食品供应链[216, 6]。其他研究则探讨特定技术,例如计算机视觉[1],这是处理图片数据类型的流行方法。通过这种分析,我们可以观察到AI在食品工程中的使用稳步增加,越来越多的创新被测试和引入。这一趋势反映了AI的日益普及以及模型的多功能性和准确性的持续改进。然而,如图4所示,采用XAI技术并未以相同的速度增长。仅有一小部分使用AI的研究也集成了XAI方法。这可以归因于研究人员专注于开发高效且准确的模型以解决所提出的问题。当前的食品研究旨在识别新的应用并改进现有模型以提高准确性。一旦达到满意的性能水平,模型的可解释性需求就变得不那么紧迫。
img-4.jpeg

图5:按主题和解释类型划分的本文调查论文分布。

文章的检查,如图5所示,揭示了食品安全是XAI应用中最突出的主题。这一主题是多数审查研究的核心,紧随其后的是真实性和可追溯性及营养价值,这两个主题在本研究领域也非常重要。相比之下,感官特性和可持续性与健康性主题较少被探索,表明科学界在将XAI技术应用于这些领域方面的兴趣较低。再次,我们观察到使用XAI方法解释光谱和时间序列数据存在差距。
论文表明图片数据是最常用的数据类型,其次是表格数据,这也被广泛使用,如图6所示。相反,光谱和时间序列数据的使用频率要低得多。图片数据的普遍使用可归因于几个因素,这些因素可以通过观察图表的后半部分来检测。提供视觉解释的XAI技术,例如基于CAM的方法,在文献中被广泛采用,正如[217]所指出的那样。这些技术非常受欢迎,因为它们提供了易于理解的视觉解释,通常以热图形式呈现,使它们成为对所分析数据经验有限但仍需要直观立即理解图像分析模型决策过程的用户的理想选择。这种效用解释了为什么大量被调查的论文依赖于它们,因此需要图片数据。相比之下,提供数值解释的技术虽然也很流行,但不如前者易于理解,因此主要用于分析表格数据。另一方面,基于规则的解释技术较为少见,因此利用较少。

图7a突出显示了对局部方法而非全局方法的明显偏好。这种偏好源于所审查工作中像LIME、SHAP和Grad-CAM等技术的流行,所有这些都是局部方法。这些方法简单易用,提供的解释易于理解,并且特别适用于理解个别情况下的模型决策。相反,全局方法更适合于获得模型决策过程的整体视图,由于其复杂性,特别是应用于高度复杂的模型时,使用较少。因此,尽管图6显示了数据类型和解释方法的分布,但大多数研究集中在图片数据和视觉解释上,而较小部分研究涉及表格数据和数值解释。
img-5.jpeg

图6:所有uvial图显示每主题、数据类型和解释类型的分布,如第2节所述。标签旁边的数字表示特定类别的研究数量。虽然各主题间的分布相对均匀,但我们的调查主要集中于图片数据和视觉解释,而一小部分研究涉及表格数据和数值解释。
img-6.jpeg

图7:饼图展示了本调查中使用全局XAI技术与局部XAI技术的论文分布(a),另一个饼图展示了应用模型无关XAI技术与模型特定XAI技术的论文百分比(b)。在两个图表中,“Both”部分表示有作品采用了多种不同类型的技巧。

图7b所示的模型特定技术的突出地位,主要是由于CAM基方法的广泛使用。论文分析表明,CNNs是图片数据最常用的方法,而CAM基技术是解释这些模型的最直接选择。相比之下,LIME和SHAP这两种最常用的方法是模型无关的。在这种情况下,没有明确的偏好于两种类型的XAI之间;相反,重点倾向于某些特定技术。

最后值得一提的是,很少有论文采用超过一种XAI技术,这限制了对模型决策过程的理解为片面的观点。这种情况在使用局部技术时尤为明显,这些技术为单个样本提供解释,而不提供对模型更广泛决策模式的见解。

10 开放挑战与未来方向

通过对各种研究的比较分析及其统计见解的评估,我们确定了食品质量领域进一步研究和未来XAI应用的若干机会。鼓励将其应用于现有研究以验证发现并确保透明度至关重要。值得注意的是,XAI方法范围的扩展为分析未充分研究的数据类型提供了有希望的机会。光谱数据常用于物理化学分析,但目前尚未被现有的XAI技术充分解决。填补这一空白需要开发专门的方法来解释这种复杂的数据类型。此外,用于时间序列分析的AI模型的XAI方法相对较少,正如[218]所确认的那样。研究人员应关注新发展,因为应用和实验新兴技术有助于完善和推广其使用。

根据[103]和[5]总结的工作,许多XAI方法提供的解释往往难以理解和需要领域专家的知识,使得这些解释本身成为需要解读的额外步骤。为了解决这个问题,最近的XAI研究进展提出了新的解决方案,例如开发框架、评估模型输出的度量标准[219, 220],以及使用生成式AI简化和澄清现有方法提供的解释。必须利用可用的多种方法来全面理解模型的决策过程。具体来说,通过采用glocal方法[5],结合同一模型的局部和全局解释,可以实现更完整和用户友好的解释。通过研究[218]的工作,我们可以观察到,据我们所知,几种类型的XAI技术尚未在分析的研究中使用,但在各种情境下可能极其有用。例如,我们在一些研究中欣赏到的基于规则的技术[31],有可能揭示食品产品质量的物理化学特性之间的因果关系,增加对这些行为的解释深度,并帮助开发更可解释的模型。基于概念的学习算法代表了一类流行的方法,可以用人类容易理解的形容词、概念或抽象来解释模型预测[221]。

食品质量评估中另一个正在增长的方法是数据融合,因为它整合了多种类型的数据,如化学、物理和感官信息,以对食品产品做出更全面的决策。这种多样数据类型的融合使分析更加丰富,但也使理解结果更具挑战性。为了解决这种复杂性,可以提出基于层次结构的可解释性方法,分解每种数据类型对最终决策的贡献。虽然尚未明确定义,但这种类型的XAI可以为解释整合多种数据类型的模型提供可行的解决方案。通过在解释中引入层次结构,可以区分每种数据类型对整体结果的贡献,阐明组合数据集如何影响模型的决策。

反事实解释在XAI研究中得到了广泛研究[5],可以显著支持食品模拟研究。这些技术有助于理解成分、环境条件和过程的变化如何影响食品的质量、味道或营养状况。反事实解释还允许研究人员考察特定成分变化如何影响保质期。通过模拟替代路径而无需昂贵或耗时的实验,反事实方法可以指导决策、优化配方并提高结果预测的准确性。

11 结论

可解释的人工智能(XAI)技术已作为增强AI模型透明度、可信度和可审计性的关键工具出现,支持可靠和可理解结果的产生。这些要求在食品工程中至关重要,因为食品是人类生活的一个基本方面,其质量和安全性需要仔细研究。在本综述中,我们旨在通过强调XAI技术的重要性并提供对两个领域的实际见解来弥合这两大学科之间的差距。我们的全面回顾检查了文献中广泛的研究所涵盖的各种数据类型——表格、图片、光谱和时间序列——以及提供的解释形式,包括数值、
基于规则的、视觉的和混合解释。此外,我们提出了一个食品质量分类法以上下文化研究,重点关注食品安全、营养价值、感官属性、真实性和可追溯性以及可持续性和健康性等关键领域。最后,我们进行了研究比较以揭示有价值的见解,识别当前研究景观中的主要趋势、优势和分歧。这种分析使我们能够确定XAI可以在食品质量方面推动进步的关键领域。

致谢

这项工作得到了ASAC s.r.l.的支持,后者资助了Leonardo Arrighi的研究奖学金。作者对此支持表示感谢。本研究还部分由巴西高等教育人员协调委员会(CAPES)资助,资助代码001;圣保罗研究基金会(FAPESP),项目编号2019/27354-3、2019/03812-2和2023/07385-7;以及巴西国家科学技术发展委员会(CNPq),项目编号140914/2021-8和307094/2021-9。

12 关于撰写过程中生成式AI和AI辅助技术的声明

在准备本工作的过程中,作者使用了ChatGPT-4o以提高可读性。使用此工具/服务后,作者根据需要审查和编辑了内容,并对已发表文章的内容承担全部责任。

参考文献

[1] Vijay Kakani, Van Huan Nguyen, Basivi Praveen Kumar, Hakil Kim, 和 Visweswara Rao Pasupuleti. 食品行业中的计算机视觉和人工智能的关键评论。Journal of Agriculture and Food Research, 2:100033, 2020. ISSN 2666-1543. doi:10.1016/j.jafr.2020.100033.
[2] Lefteris Benos, Aristotelis C. Tagarakis, Georgios Dolias, Remigio Berruto, Dimitrios Kateris, 和 Dionysis Bochtis. 农业中的机器学习:全面更新的评论。Sensors, 21(11):3758, 2021. ISSN 1424-8220. doi:10.3390/s21113758.
[3] Diana M. Thomas, Samantha Kleinberg, Andrew W. Brown, Mason Crow, Nathaniel D. Bastian, Nicholas Reisweber, Robert Lasater, Thomas Kendall, Patrick Shafto, Raymond Blaine, Sarah Smith, Daniel Ruiz, Christopher Morrell, 和 Nicholas Clark. 支持营养研究中AI和伦理原则的机器学习建模实践。Nutrition & Diabetes, 12(1):1-10, 2022. ISSN 2044-4052. doi:10.1038/s41387-022-00226-y.
[4] Suhaili Othman, Nidhi Rajesh Mavani, M. A. Hussain, Norliza Abd Rahman, 和 Jarinah Mohd Ali. 基于人工智能的技术在食品和农业工业中的掺假和缺陷检测:综述。Journal of Agriculture and Food Research, 12:100590, 2023. ISSN 2666-1543. doi:10.1016/j.jafr.2023.100590.
[5] Luca Longo, Mario Brcic, Federico Cabitza, Jaesik Choi, Roberto Confalonieri, Javier Del Ser, Riccardo Guidotti, Yoichi Hayashi, Francisco Herrera, Andreas Holzinger, Richard Jiang, Hassan Khosravi, Freddy Lecue, Gianclaudio Malgieri, Andrés Páez, Wojciech Samek, Johannes Schneider, Timo Speith, 和 Simone Stumpf. 可解释人工智能(XAI)2.0:开放挑战和跨学科研究方向宣言。Information Fusion, 106:102301, 2024. ISSN 1566-2535. doi:10.1016/j.inffus.2024.102301.
[6] Louise Manning, Steve Brewer, Peter J. Craigon, Jeremy Frey, Anabel Gutierrez, Naomi Jacobs, Samantha Kanza, Samuel Munday, Justin Sacks, 和 Simon Pearson. 食品行业的AI和伦理:在整个供应链中采用技术的共同语言的发展。Trends in Food Science & Technology, 125:33-42, 2022. ISSN 0924-2244. doi:10.1016/j.tifs.2022.04.025.
[7] Marco Tulio Ribeiro, Sameer Singh, 和 Carlos Guestrin. “我为什么要信任你?”解释任何分类器的预测。In Proceedings of the 22nd ACM SIGKDD国际知识发现与数据挖掘会议,页码1135-1144, 2016.
[8] Scott M. Lundberg 和 Su-In Lee. 解释模型预测的统一方法。In Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS’17, 页码4768-4777, Red Hook, NY, USA, 2017. Curran Associates Inc. ISBN 9781510860964.
[9] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, 和 Antonio Torralba. 学习深层特征以实现判别定位。In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 页码2921-2929, 2016.
[10] Qingyuan Zhao 和 Trevor Hastie. 黑箱模型的因果解释。Journal of Business & Economic Statistics, 39(1):272-281, 2021. ISSN 0735-0015. doi:10.1080/07350015.2019.1624293.
[11] Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-Robert Müller, 和 Wojciech Samek. 层级相关传播解释非线性分类器决策的像素级原因。PLOS ONE, 10(7):e0130140, 2015. ISSN 1932-6203. doi:10.1371/journal.pone.0130140.
[12] Claudio Peri. 食品质量的世界。Food Quality and Preference, 17(1):3-8, 2006. ISSN 0950-3293. doi:10.1016/j.foodqual.2005.03.002.
[13] Sarina A. Halim-Lim, Nurul H. Ahmad, 和 Noor Z. N. Hasnan. 食品行业的质量和安全。Wiley StatsRef: Statistics Reference Online, 页码1-7, 2022. doi:10.1002/9781118445112.stat08389.
[14] Chris J. Seal 和 Kirsten Brandt. 第三章 - 食品的营养价值。Handbook of Organic Food Safety and Quality, 页码25-40, 2007. doi:10.1533/9781845693411.1.25.
[15] Linda J. Malcolmson 和 Jill K. Winkler-Moser. 风味和感官方面。Bailey’s Industrial Oil and Fat Products, 页码1-17, 2020. doi:10.1002/047167849X.bio032.pub2.
[16] Syed Abdul Wadood, Guo Boli, Zhang Xiaowen, Imtiaz Hussain, 和 Wei Yimin. 分析技术在植物源食品可追溯性和真实性中的最新应用进展。Microchemical Journal, 152:104295, 2020. ISSN 0026-265X. doi:10.1016/j.microc.2019.104295.
[17] Giuliana Vinci, Raffaella Preti, Alessandra Tieri, 和 Simone Vieri. 稳定同位素比率分析检测动物源食品的真实性与质量。Journal of the Science of Food and Agriculture, 93(3):439-448, 2013. ISSN 1097-0010. doi:10.1002/jsfa.5970.
[18] Marcus Vinicius da Silva Ferreira, Sylvio Barbon Junior, Victor G. Turrisi da Costa, Douglas Fernandes Barbin, 和 José Lucena Barbosa Jr. 深度计算机视觉系统和可解释的人工智能应用于龙果(Hylocereus spp.)分类。Scientia Horticulturae, 338:113605, 2024. ISSN 0304-4238. doi:10.1016/j.scienta.2024.113605.
[19] Ingrid Alves de Moraes, Sylvio Barbon Junior, 和 Douglas Fernandes Barbin. 计算机视觉分类金桔(Averrhoa carambola L.)成熟阶段的解释与说明。Food Research International, 192:114836, 2024. ISSN 0963-9969. doi:10.1016/j.foodres.2024.114836.
[20] Vittorio Natale Borroni, Silvia Fargion, Alessandra Mazzocchi, Marco Giachetti, Achille Lanzarini, Margherita Dall’Asta, Francesca Scazzina, 和 Carlo Agostoni. 当前食品质量、对健康的影响和可持续性:一个模型案例报告。International Journal of Food Sciences and Nutrition, 68(1):117-120, 2017. doi:10.1080/09637486.2016.1221385.
[21] Suellen Secchi Martinelli 和 Suzi Barletto Cavalli. 健康和可持续饮食:叙述性审查挑战与视角。Ciencia & Saude Coletiva, 24(11):4251-4262, 2019. ISSN 1678-4561. doi:10.1590/1413-812320182411.30572017.
[22] Fariza Sabrina, Shaleeza Sohail, Farnaz Farid, Sayka Jahan, Farhad Ahamed, 和 Steven Gordon. 一种基于可解释人工智能的智能农业系统。Computers, Materials & Continua, 页码3777-3797, 2022. ISSN 1546-2218. doi:10.32604/cmc.2022.026363.
[23] Nikolaos L. Tsakiridis, Themistoklis Diamantopoulos, Andreas L. Symeonidis, John B. Theocharis, Athanasios Iossifides, Periklis Chatzimisios, George Pratos, 和 Dimitris Kouvas. 多功能物联网在农业中的应用:一种可解释的人工智能方法。Artificial Intelligence Applications and Innovations, 页码180-191, 2020. doi:10.1007/978-3-030-49186-4_16.
[24] Gehad Ismail Sayed 和 Aboul Ella Hassanien. 可解释AI和黏菌算法用于开心果种类分类。Artificial Intelligence: A Real Opportunity in the Food Industry, 页码29-43, 2023. doi:10.1007/978-3-031-13702-0_3.
[25] Zhiyong Cui, Ninglong Zhang, Tianxing Zhou, Xueke Zhou, Hengli Meng, Yanyang Yu, Zhiwei Zhang, Yin Zhang, Wenli Wang, 和 Yuan Liu. 通过集成对接和分子描述符与指纹以及机器学习揭示TLR1和T2R14受体的保守位点和识别机制。Journal of Agricultural and Food Chemistry, 71(14):5630-5645, 2023. ISSN 0021-8561. doi:10.1021/acs.jafc.3c00591.
[26] Debjani Sihi, Biswanath Dari, Abraham Peedikayil Kuruvila, Gaurav Jha, 和 Kanad Basu. 解释机器学习方法量化气候和土壤特性对美国本土主要农作物长期(1981-2015)产量影响。Frontiers in Sustainable Food Systems, 6, 2022. ISSN 2571-581X. doi:10.3389/fsufs.2022.847892.
[27] Cláudia M. Viana, Maurício Santos, Dulce Freire, Patrícia Abrantes, 和 Jorge Rocha. 解释影响农业用地使用因素的评价:一种机器学习和模型无关方法。Ecological Indicators, 131:108200, 2021. ISSN 1470-160X. doi:10.1016/j.ecolind.2021.108200.
[28] Florian Huber, Artem Yushchenko, Benedikt Stratmann, 和 Volker Steinhage. 极端梯度提升用于产量估计与深度学习方法的对比。Computers and Electronics in Agriculture, 202:107346, 2022. ISSN 0168-1699. doi:10.1016/j.compag.2022.107346.
[29] Diana Ramírez-Mejía, Christian Levers, 和 Jean-François Mas. 墨西哥鳄梨前沿动态的空间格局和决定因素。Regional Environmental Change, 22(1):28, 2022. ISSN 1436-378X. doi:10.1007/s10113-022-01883-6.
[30] Reka Daniel-Weiner, Michelle I. Cardel, Michael Skarlinski, Angela Goscilo, Carl Anderson, 和 Gary D. Foster. 在没有详细营养标签的情况下实现明智决策制定:一种估计食品中添加糖含量的模型。Nutrients, 15:803, 2023. ISSN 2072-6643. doi:10.3390/nu15040803.
[31] Mehrdad Rostami, Usman Muhammad, Saman Forouzandeh, Kamal Berahmand, Vahid Farrahi, 和 Mourad Oussalah. 一种有效的基于深度图像聚类和社区检测的可解释食品推荐系统。Intelligent Systems with Applications, 16:200157, 2022. ISSN 2667-3053. doi:10.1016/j.iswa.2022.200157.
[32] Yusuf Durmuş 和 Ahmet Ferit Atasoy. 多变量机器学习方法的应用以研究不同胡椒香料中的有机化合物含量。Food Bioscience, 51:102216, 2023. ISSN 2212-4292. doi:10.1016/j.fbio.2022.102216.
[33] Yanan Zhou, Wei Wu, Huan Wang, Xin Zhang, Chao Yang, 和 Hongbin Liu. 基于Sentinel-2数据和SVM及SHAP技术的植被覆盖下土壤质地类别识别。IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15:3758-3770, 2022. ISSN 2151-1535. doi:10.1109/JSTARS.2022.3164140.
[34] Christian Taylor, Jonathan Guy, 和 Jaume Bacardit. 使用机器学习从群体级别重量时间序列估计个体级别猪生长轨迹。Computers and Electronics in Agriculture, 208:107790, 2023. ISSN 0168-1699. doi:10.1016/j.compag.2023.107790.
[35] Rashmi Mishra, Ankit Kavita, Rajpal, Varnika Bhatia, Sheetal Rajpal, Manoj Agarwal, 和 Naveen Kumar. I-LDD: 一种可解释的叶病探测器。Soft Computing, 2023. ISSN 1433-7479. doi:10.1007/s00500-023-08512-2.
[36] Elias Ennadifi, Sohaib Laraba, Damien Vincke, Benoît Mercatoris, 和 Bernard Gosselin. 使用卷积神经网络和GradCAM可视化的小麦病害分类和定位。2020 International Conference on Intelligent Systems and Computer Vision (ISCV), 页码1-5, 2020. doi:10.1109/ISCV49265.2020.9204258.
[37] Junde Chen, Defu Zhang, Md Suzauddola, 和 Adnan Zeb. 使用嵌入注意机制的MobileNet-v2模型识别作物病害。Applied Soft Computing, 113:107901, 2021. ISSN 1568-4946. doi:10.1016/j.asoc.2021.107901.
[38] Xuyang Ban, Pan Liu, Lei Xu, 和 Jinling Zhao. 基于YOLOv8n轻量级模型的小麦穗检测。In 2023 11th International Conference on Agro-Geoinformatics (Agro-Geoinformatics), 页码1-6, 2023. doi:10.1109/Agro-Geoinformatics59224.2023.10233526.
[39] Yingjie Wang, Jaganmohan Chandrasekaran, Flora Haberkorn, Yan Dong, Munisamy Gopinath, 和 Feras A. Batarseh. Deepfarm: 利用可解释因果推断驱动的农场生产管理的AI方法。In 2022 IEEE 29th Annual Software Technology Conference (STC), 页码27-36, 2022. doi:10.1109/STC55697.2022.00013.
[40] Ritesh Maurya, Nageshwar Nath Pandey, Vibhav Prakash Singh, 和 T Gopalakrishnan. 使用可解释视觉Transformer网络的植物病害分类。2023 International Conference on Recent Advances in Electrical, Electronics & Digital Healthcare Technologies (REEDCON), 页码688-692, 2023. doi:10.1109/REEDCON57544.2023.10151342.
[41] Tim van de Looverbosch, Jiaqi He, Astrid Tempelaere, Klaas Kelchtermans, Pieter Verboven, Tinne Tuytelaars, Jan Sijbers, 和 Bart Nicolai. 使用可解释的深度异常检测X射线图像在线无损内部紊乱检测梨果。Computers and Electronics in Agriculture, 197:106962, 2022. ISSN 0168-1699. doi:10.1016/j.compag.2022.106962.
[42] David Broniatowski. 人工智能的心理学基础解释性和可解释性,2021.
[43] Gareth James, Daniela Witten, Trevor Hastie, 和 Robert Tibshirani. 统计学习导论:附R语言应用。Springer Texts in Statistics. Springer US, 2021. ISBN 978-1-07-161417-4 978-1-07-161418-1. doi:10.1007/978-1-0716-1418-1.
[44] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly 等. 图像价值16x16词:用于大规模图像识别的Transformer。CoRR, abs/2010.11929, 2020.
[45] Rui Shi, Tianxing Li, Liguo Zhang, 和 Yasushi Yamaguchi. Vision Transformers和卷积神经网络的可视化比较。IEEE Transactions on Multimedia, 26:2327-2339, 2024. doi:10.1109/TMM.2023.3294805.
[46] Wu Weibin, Su Yuxin, Chen Xixian, Zhao Shenglin, King Irwin, Lyu Michael R., 和 Tai Yu-Wing. 通过概念归因实现卷积神经网络的全局解释。In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 页码8649-8658, 2020. doi:10.1109/CVPR42600.2020.00868.
[47] Mattia Setzu, Riccardo Guidotti, Anna Monreale, Franco Turini, Dino Pedreschi, 和 Fosca Giannotti. GLocalX - 从局部到全局解释黑箱AI模型。Artificial Intelligence, 294:103457, 2021. ISSN 0004-3702. doi:10.1016/j.artint.2021.103457.
[48] Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, 和 Dhruv Batra. Grad-CAM: 使用基于梯度的定位进行深度网络的可视化解释。In 2017 IEEE International Conference on Computer Vision (ICCV), 页码618-626, 2017. doi:10.1109/ICCV.2017.74. ISSN: 2380-7504.
[49] Hila Chefer, Shir Gur, 和 Lior Wolf. 超越注意力可视化的Transformer解释性。2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 页码782-791, 2021. doi:10.1109/CVPR46437.2021.00084.
[50] Hagar Kafri, Marco Olivieri, Fabio Antonacci, Mordehay Moradi, Augusto Sarti, 和 Sharon Gannot. 基于物理信息可解释神经网络的近场声学全息图Grad-CAM启发式解释。In ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 页码1-5, 2023. doi:10.1109/ICASSP49357.2023.10097272.
[51] Kaihua Wei, Bojian Chen, Jingcheng Zhang, Shanhui Fan, Kaihua Wu, Guangyu Liu, 和 Dongmei Chen. 可解释深度学习研究用于叶片病害分类。Agronomy, 12(5):1035, 2022. ISSN 2073-4395. doi:10.3390/agronomy12051035.
[52] Zhiwen Mi, Xudong Zhang, Jinya Su, Dejun Han, 和 Baofeng Su. 基于深度学习和注意力机制及移动设备图像的小麦条锈病分级。Frontiers in Plant Science, 11, 2020. ISSN 1664-462X. doi:10.3389/fpls.2020.558126.
[53] Chunguang Bi, Suzhen Xu, Nan Hu, Shuo Zhang, Zhenyi Zhu, 和 Helong Yu. 基于改进的MobileNetV3模型的玉米叶片病害识别方法。Agronomy, 13(2):300, 2023. ISSN 2073-4395. doi:10.3390/agronomy13020300.
[54] Yiwei Zhong, Baojin Huang, 和 Chaowei Tang. 使用嵌入Transformer的ResNet对不平衡数据集上的木薯叶片病害进行分类。Agriculture, 12(9):1360, 2022. ISSN 2077-0472. doi:10.3390/agriculture12091360.
[55] Junde Chen, Defu Zhang, 和 Y. A. Nanehkaran. 使用深度迁移学习和增强轻量级网络识别植物病害。Multimedia Tools and Applications, 79(41):31497-31515, 2020. ISSN 1573-7721. doi:10.1007/s11042-020-09669-w.
[56] Chunfeng Gao, Wei Guo, Chenghai Yang, Zheng Gong, Jibo Yue, Yuanyuan Fu, 和 Haikuan Feng. 自然环境中快速轻量级检测小麦赤霉病穗的方法。Computers and Electronics in Agriculture, 216:108484, 2024. ISSN 0168-1699. doi:10.1016/j.compag.2023.108484.
[57] Yuan Yang, Ge Jiao, Jiahao Liu, Weichen Zhao, 和 Jinhua Zheng. 基于注意力机制和动态卷积的轻量级水稻病害识别网络。Ecological Informatics, 78:102320, 2023. ISSN 1574-9541. doi:10.1016/j.ecoinf.2023.102320.
[58] Fereshteh Shahoveisi, Hamed Taheri Gorji, Seyedmojtaba Shahabi, Seyedali Hosseinirad, Samuel Markell, 和 Fartash Vasefi. 图像处理和迁移学习在锈病检测中的应用。Scientific Reports, 13(1):5133, 2023. ISSN 2045-2322. doi:10.1038/s41598-023-31942-9.
[59] V. Krishna Pratap 和 N. Suresh Kumar. 使用定制EfficientNetB4从辣椒叶片图像中高精度多类分类辣椒叶片病害。Smart Agricultural Technology, 5:100295, 2023. ISSN 2772-3755. doi:10.1016/j.atech.2023.100295.
[60] Md Mustak Un Nobi, Md Rifat, M. F. Mridha, Sultan Alfarhood, Mejdl Safran, 和 Dunren Che. GLD-Det: 使用基于MobileNet的轻量级深度学习方法实时检测番石榴叶片病害。Agronomy, 13(9):2240, 2023. ISSN 2073-4395. doi:10.3390/agronomy13092240.
[61] Junde Chen, Adnan Zeb, Y. A. Nanehkaran, 和 Defu Zhang. 深度学习堆叠集成模型用于植物病害识别。Journal of Ambient Intelligence and Humanized Computing, 14(9):12359-12372, 2023. ISSN 1868-5145. doi:10.1007/s12652-022-04334-6.
[62] Ritesh Maurya, Arti Srivastava, Ashutosh Srivastava, Vinay Kumar Pathak, 和 Malay Kishore Dutta. 计算机辅助汞重金属中毒鱼类检测:机器视觉和人工智能技术的应用。Multimedia Tools and Applications, 82(13):20517-20536, 2023. ISSN 1573-7721. doi:10.1007/s11042-023-14358-5.
[63] Mamta Gehlot 和 Geeta Chhabra Gandhi. “EffiNet-Ts”: 使用EfficientNet进行植物病害检测和可视化的深度可解释架构。Journal of Plant Diseases and Protection, 130:413-430, 2023. ISSN 1861-3837. doi:10.1007/s41348-023-00707-x.
[64] Md. Ashraful Haque, Sudeep Marwaha, Chandan Kumar Deb, Sapna Nigam, 和 Alka Arora. 使用深度学习模型识别玉米作物疾病。Neural Computing and Applications, 35(10):7407-7421, 2023. ISSN 1433-3058. doi:10.1007/s00521-022-08003-9.
[65] Chaoxin Wang, Doina Caragea, Nisarga Kodadinne Narayana, Nathan T. Hein, Raju Bheemanahalli, Impa M. Somayanda, 和 S. V. Krishna Jagadish. 基于深度学习的高通量表型分析,用于暴露于高温夜间的水稻粉质粒检测。Plant Methods, 18(1):9, 2022. ISSN 1746-4811. doi:10.1186/s13007-022-00839-5.
[66] Riyao Chen, Haixia Qi, Yu Liang, 和 Mingchao Yang. 基于通道注意和通道剪枝的深度学习识别植物叶片疾病。Frontiers in Plant Science, 13, 2022. ISSN 1664-462X. doi:10.3389/fpls.2022.1023515.
[67] Lu Lu, Wei Liu, Wenbo Yang, Manyu Zhao, 和 Tinghao Jiang. 基于改进ShuffleNetV2的轻量级玉米种子病害识别方法。Agriculture, 12(11):1929, 2022. ISSN 2077-0472. doi:10.3390/agriculture12111929.
[68] Muhammad Shoaib, Tariq Hussain, Babar Shah, Ihsan Ullah, Sayyed Mudassar Shah, Farman Ali, 和 Sang Hyun Park. 基于深度学习的分割和分类叶图像以检测番茄植物病害。Frontiers in Plant Science, 13, 2022. ISSN 1664-462X. doi:10.3389/fpls.2022.1031748.
[69] Xiang Zhang, Huiyi Gao, 和 Li Wan. 使用扩张卷积和改进的通道注意模块进行细粒度作物病害分类。Agriculture, 12(10):1727, 2022. ISSN 2077-0472. doi:10.3390/agriculture12101727.
[70] Nidhi Kundu, Geeta Rani, Vijaypal Singh Dhaka, Kalpit Gupta, Siddaiah Chandra Nayaka, Eugenio Vocaturo, 和 Ester Zumpano. 使用深度学习进行玉米作物病害检测、严重程度预测和作物损失估计。Artificial Intelligence in Agriculture, 6:276-291, 2022. ISSN 2589-7217. doi:10.1016/j.aiia.2022.11.002.
[71] Sabbir Ahmed, Md. Bakhtiar Hasan, Tasnim Ahmed, Md. Redwan Karim Sony, 和 Md. Hasanul Kabir. 少即是多:更轻更快的深度神经架构用于番茄叶片病害分类。IEEE Access, 10: 68868-68884, 2022. ISSN 2169-3536. doi:10.1109/ACCESS.2022.3187203.
[72] Ryota Nomura 和 Kazuo Oki. 开发使用侧视视频数据和计算机视觉的山核桃树健康监测方法。Optical Review, 28(6):730-737, 2021. ISSN 1349-9432. doi:10.1007/s10043-021-00694-0.
[73] Liangzhe Chen, Xiaohui Cui, 和 Wei Li. 少样本植物病害检测的元学习。Foods, 10(10): 2441, 2021. ISSN 2304-8158. doi:10.3390/foods10102441.
[74] Muhammad E. H. Chowdhury, Tawsifur Rahman, Amith Khandakar, Mohamed Arselene Ayari, Aftab Ullah Khan, Muhammad Salman Khan, Nasser Al-Emadi, Mamun Bin Ibne Reaz, Mohammad Tariqul Islam, 和 Sawal Hamid Md Ali. 使用深度学习技术进行自动可靠的叶片病害检测。AgriEngineering, 3(2):294-312, 2021. ISSN 2624-7402. doi:10.3390/agriengineering3020020.
[75] RajinderKumar M. Math 和 Nagaraj V. Dharwadkar. 使用卷积神经网络进行葡萄病害早期检测和识别。Journal of Plant Diseases and Protection, 129(3):521-532, 2022. ISSN 1861-3837. doi:10.1007/s41348-022-00589-5.
[76] Enes Ayan. 遗传算法优化卷积神经网络用于作物害虫分类的超参数。Arabian Journal for Science and Engineering, 49(3):3079-3093, 2024. ISSN 2191-4281. doi:10.1007/s13369-023-07916-4.
[77] Solemane Coulibaly, Bernard Kamsu-Foguem, Dantouma Kamissoko, 和 Daouda Traore. 解释性深度卷积神经网络用于昆虫害虫识别。Journal of Cleaner Production, 371:133638, 2022. ISSN 0959-6526. doi:10.1016/j.jclepro.2022.133638.
[78] Luca Butera, Alberto Ferrante, Mauro Jermini, Mauro Prevostini, 和 Cesare Alippi. 精准农业:有效的深度学习策略用于害虫昆虫检测。IEEE/CAA Journal of Automatica Sinica, 9(2):246-258, 2022. ISSN 2329-9266, 2329-9274. doi:10.1109/JAS.2021.1004317.
[79] Shi-Yao Zhou 和 Chung-Yen Su. 高效卷积神经网络用于害虫识别——ExquisiteNet。In 2020 IEEE Eurasia Conference on IOT, Communication and Engineering (ECICE), 页码216-219, 2020. doi:10.1109/ECICE50847.2020.9301938.
[80] N. Jai Vardhan, Daggupati Chandana, R Dheepak Raaj, Sudireddy Shanmukhi, 和 Anisha Radhakrishnan. 使用贝叶斯优化和XAI的深度学习模型超参数调整对比研究。In 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT), 页码1-6, 2024. doi:10.1109/ICCCNT61001.2024.10725868.
[81] Rubini Pudupet; Paranjothi Ethiraj, 和 Kavitha. 基于深度学习的甘蔗植物病害早期检测方法:一种可解释的人工智能模型。IAES International Journal of Artificial Intelligence (IJ-AI), 13(1):974-983, 2024. ISSN 2252-8938. doi:10.11591/ijai.v13.i1.pp974-983.
[82] Maria Tariq, Usman Ali, Sagheer Abbas, Shahzad Hassan, Rizwan Ali Naqvi, Muhammad Adnan Khan, 和 Daesik Jeong. 使用VGG16和可解释AI进行玉米叶片病害的洞察诊断。Frontiers in Plant Science, 15, 2024. ISSN 1664-462X. doi:10.3389/fpls.2024.1402835.
[83] S. M. Nuruzzaman Nobel, Maharin Afroj, Md Mohsin Kabir, 和 M. F. Mridha. 开发前沿集成管道用于快速准确的叶片病害诊断。Artificial Intelligence in Agriculture, 14:56-72, 2024. ISSN 2589-7217. doi:10.1016/j.aiia.2024.10.005.
[84] Sadia Kamal, Parth Sharma, P. K. Gupta, Mohammad Khubeb Siddiqui, Ankush Singh, 和 Abhijit Dutt. DVTXAI: 一种新型深度视觉Transformer与基于可解释AI的框架及其在农业中的应用。The Journal of Supercomputing, 81(1):280, 2024. ISSN 1573-0484. doi:10.1007/s11227-024-06494-y.
[85] Tasnim Ahmed, Md. Bakhtiar Hasan, Sabbir Ahmed, 和 Md. Hasanul Kabir. ExE-net: 用于马铃薯叶片病害分类的可解释集成网络。In 2024 IEEE加拿大电气和计算机工程会议(CCECE), 页码335-339, 2024. doi:10.1109/CCECE59415.2024.10667205. ISSN: 2576-7046.
[86] B Ashoka S, M Pramodha, Abdullah Y Muaad, Roseline Nyange, A Anusha, N Shilpa G, 和 Channabasava Chola. 可解释AI框架用于香蕉病害检测。In 2024 5th International Conference on Innovative Trends in Information Technology (ICITIIT), 页码1-6, 2024. doi:10.1109/ICITIIT61487.2024.10580364.
[87] Siwar Bengamra, Ezzeddine Zagrouba, 和 André Bigand. 基于机器学习的土豆叶片病害检测的可解释AI。In 2023 IEEE模糊系统国际会议(FUZZ), 页码1-6, 2023. doi:10.1109/FUZZ52849.2023.10309803. ISSN: 1558-4739.
[88] P Gowri, S Aathilakshmi, G Sivapriya, A Boomika, K Ashika, 和 P Aswin. 基于可解释AI的番茄叶片病害识别模型解释性。In 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT), 页码1-6, 2024. doi:10.1109/ICCCNT61001.2024.10724346. ISSN: 2473-7674.
[89] Md Mokshedur Rahman, Zhang Yan, Mohammad Tarek Aziz, MD Abu Bakar Siddick, Tien Truong, Md Maskat Sharif, Nippon Datta, Tanjim Mahmud, Renzon Daniel Cosme Pecho, 和 Sha Md Farid. 可解释深度迁移学习框架用于稻叶病害诊断和分类。International Journal of Advanced Computer Science and Applications (ijacsa), 15(12), 2024. ISSN 2156-5570. doi:10.14569/IJACSA.2024.0151287.
[90] Natasha Nigar, Hafiz Muhammad Faisal, Muhammad Umer, Olukayode Oki, 和 Jose Manappattukunnel Lukose. 使用可解释人工智能的深度学习技术提高植物病害分类。IEEE Access, 12:100005-100014, 2024. ISSN 2169-3536. doi:10.1109/ACCESS.2024.3428553.
[91] Inés Hernández, Salvador Gutiérrez, Ignacio Barrio, Rubén Íñiguez, 和 Javier Tardaguila. 使用可解释深度学习进行田间病害症状检测和定位:葡萄霜霉病的用例。Computers and Electronics in Agriculture, 226:109478, 2024. ISSN 0168-1699. doi:10.1016/j.compag.2024.109478.
[92] Micheal Francis Kalyango 和 Kyebambe Moses Ntanda. 可解释深度学习用于玉米条纹病诊断。In 2023 First International Conference on the Advancements of Artificial Intelligence in African Context (AAIAC), 页码1-6, 2023. doi:10.1109/AAIAC60008.2023.10465315.
[93] Bh. Prashanthi, A. V. Praveen Krishna, 和 Ch. Mallikarjuna Rao. LEViT - 使用增强Vision Transformer(ViT)模型进行叶片病害识别和分类。Multimedia Tools and Applications, 2024. ISSN 1573-7721. doi:10.1007/s11042-024-19866-6.
[94] Sana Z. Khan, Salam Dhou, 和 A. R. Al-Ali. 基于机器学习的枣树种植:收获和病害识别。IEEE Access, 12:157854-157871, 2024. ISSN 2169-3536. doi:10.1109/ACCESS.2024.3484943.
[95] Hossein Nematzadeh, José García-Nieto, Sandro Hurtado, José F. Aldana-Montes, 和 Ismael Navas-Delgado. 模型无关局部解释:多目标遗传算法解释器。Engineering Applications of Artificial Intelligence, 139:109628, 2025. ISSN 0952-1976. doi:10.1016/j.engappai.2024.109628.
[96] Abdus Salam, Mansura Naznine, Nusrat Jahan, Emama Nahid, Md Nahiduzzaman, 和 Muhammad E. H. Chowdhury. 使用CNN基础智能安卓应用程序进行桑葚叶片病害检测。IEEE Access, 12:83575-83588, 2024. ISSN 2169-3536. doi:10.1109/ACCESS.2024.3407153.
[97] Ammar Oad, Syed Shoaib Abbas, Amna Zafar, Beenish Ayesha Akram, Feng Dong, Mir Sajjad Hussain Talpur, 和 Mueen Uddin. 使用集成学习和可解释AI进行植物叶片病害检测。IEEE Access, 12:156038-156049, 2024. ISSN 2169-3536. doi:10.1109/ACCESS.2024.3484574.
[98] Priyadarshini Patil, Sneha K Pamali, Shreya B Devagiri, A S Sushma, 和 Jyothi Mirje. 使用XAI进行植物叶片病害检测。In 2024 3rd International Conference on Artificial Intelligence For Internet of Things (AIIoT), 页码1-6, 2024. doi:10.1109/AIIoT58432.2024.10574617.
[99] Amal Jlassi, Amani Elaoud, Haythem Ghazouani, 和 Walid Barhoumi. 使用转移学习和基于重加权训练的不平衡数据进行马铃薯叶片病害分类。SN Computer Science, 5(8):987, 2024. ISSN 2661-8907. doi:10.1007/s42979-024-03334-x.
[100] Tahmid Enam Shrestha, Al Rafi Aurnob, Sharia Arfin Tanim, Maruful Islam, 和 Kamruddin Nur. 革新黄瓜农业:AI用于精准分类叶片病害。In 2024 6th International Conference on Electrical Engineering and Information & Communication Technology (ICEEICT), 页码776-781, 2024. doi:10.1109/ICEEICT62016.2024.10534530. ISSN: 2769-5700.
[101] Luyl-Da Quach, Khang Nguyen Quoc, Anh Nguyen Quynh, Hoang Tran Ngoc, 和 Nguyen Thai-Nghe. 番茄健康监测系统:基于YOLOv8模型和使用Grad-CAM++的可解释MobileNet模型进行番茄分类、检测和计数的系统。IEEE Access, 12:9719-9737, 2024. ISSN 2169-3536. doi:10.1109/ACCESS.2024.3351805.
[102] Shizhuang Weng, Kaixuan Han, Zhaojie Chu, Gongqin Zhu, Cunchuan Liu, Zede Zhu, Zixi Zhang, Ling Zheng, 和 Linsheng Huang. 结合深层光谱网络和肌红蛋白信息的快速非破坏性光谱方法用于分类感染赤霉病的小麦籽粒。Computers and Electronics in Agriculture, 190:106483, 2021. ISSN 0168-1699. doi:10.1016/j.compag.2021.106483.
[103] Tek Raj Chhetri, Armin Hohenegger, Anna Fensel, Mariam Aramide Kasali, 和 Asiru Afeez Adekunle. 使用深度学习和知识图谱提高木薯病害预测准确性和用户级可解释性:一项研究。Expert Systems with Applications, 233:120955, 2023. ISSN 0957-4174. doi:10.1016/j.eswa.2023.120955.
[104] Zhipeng Yuan, Kang Liu, Shunbao Li, 和 Po Yang. 自动生成基于视觉概念的害虫识别解释。2023 IEEE第21届工业信息学国际会议(INDIN), 页码1-6, 2023. doi:10.1109/INDIN51400.2023.10217975.
[105] Md Humaion Kabir Mehedi, Nafisa Nawer, Shafi Ahmed, Md Shakiful Islam Khan, Khan Md Hasib, M. F. Mridha, Md. Golam Rabiul Alam, 和 Thanh Thi Nguyen. PLD-det: 使用改进YOLOv7端到端神经网络方法进行植物叶片病害实时检测。Neural Computing and Applications, 36(34):21885-21898, 2024. ISSN 1433-3058. doi:10.1007/s00521-024-10409-6.
[106] Venkata Sai Sankara Vineeth Chivukula, G. Anuradha, Surya Naga Chandra Dhanekula, 和 Naga Ganesh Kothagundla. 使用可解释AI进行水稻作物病害检测。In 2023 全球信息技术与通信会议(GCITC), 页码1-8, 2023. doi:10.1109/GCITC60406.2023.10425857.
[107] Aditya Chattopadhyay, Anirban Sarkar, Prantik Howlader, 和 Vineeth N. Balasubramanian. Grad-CAM++: 改进的深度卷积网络视觉解释。In 2018 IEEE冬季计算机视觉应用会议(WACV), 页码839-847, 2018. doi:10.1109/WACV.2018.00097.
[108] Haofan Wang, Zifan Wang, Mengnan Du, Fan Yang, Zijian Zhang, Sirui Ding, Piotr Mardziel, 和 Xia Hu. Score-CAM: 深度卷积网络的分数加权视觉解释。In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 页码24-25, 2020.
[109] Marco de Benito Fernández, Daniel López Martínez, Alfonso González-Briones, Pablo Chamoso, 和 Emilio S. Corchado. 评估XAI模型用于自动化植物病害诊断的深度学习技术结果解释。Sustainable Smart Cities and Territories的趋势, 页码417-428, 2023. doi:10.1007/978-3-031-36957-5_36.
[110] Jessica Fernandes Lopes, Victor G. Turrisi da Costa, Douglas F. Barbin, Luis Jam Pier Cruz-Tirado, Vincent Baeten, 和 Sylvio Barbon Junior. 深度计算机视觉系统用于可可分类。Multimedia Tools and Applications, 81(28):41059-41077, 2022. ISSN 1573-7721. doi:10.1007/s11042-022-13097-3.
[111] Astrid Tempelaere, Leen Van Doorselaer, Jiaqi He, Pieter Verboven, 和 Bart M. Nicolai. Braenet: 使用X射线成像数据检测‘布雷本’苹果内部紊乱。Food Control, 155:110092, 2024. ISSN 0956-7135. doi:10.1016/j.foodcont.2023.110092.
[112] Jiangong Ni, Yifan Zhao, Zhigang Zhou, Longgang Zhao, 和 Zhongzhi Han. 使用带有注意力机制的卷积神经网络进行调味料识别。Journal of Food Composition and Analysis, 115:104964, 2023. ISSN 0889-1575. doi:10.1016/j.jfca.2022.104964.
[113] Ziliang Huang, Rujing Wang, Ying Cao, Shijian Zheng, Yue Teng, Fenmei Wang, Liusan Wang, 和 Jianming Du. 基于深度学习的大豆种子分类。Computers and Electronics in Agriculture, 202:107393, 2022. ISSN 0168-1699. doi:10.1016/j.compag.2022.107393.
[114] Peng Xu, Qian Tan, Yunpeng Zhang, Xiantao Zha, Songmei Yang, 和 Ranbing Yang. 基于机器视觉和深度学习的玉米种子分类和识别研究。Agriculture, 12(2):232, 2022. ISSN 2077-0472. doi:10.3390/agriculture12020232. Yangyang Zhao, Zhanquan Sun, Engang Tian, Chuanfei Hu, Hui Zong, 和 Fan Yang. 基于部分优先注意力机制的草药识别CNN模型。In 2020 IEEE系统、人与控制论国际会议(SMC),页码2565-2571, 2020. doi:10.1109/SMC42975.2020.9283189.
[116] Zeyu Yu, Hui Fang, Qiannan Zhangjin, Chunxiao Mi, Xuping Feng, 和 Yong He. 结合深度学习的高光谱成像技术用于秋葵杂交种子识别。Biosystems Engineering, 212:46-61, 2021. ISSN 1537-5110. doi:10.1016/j.biosystemseng.2021.09.010.
[117] Ilianna Kollia, Jack Stevenson, 和 Stefanos Kollias. AI驱动高效安全食品供应链。Electronics, 10(11):1223, 2021. ISSN 2079-9292. doi:10.3390/electronics10111223.
[118] Tomoaki Yamaguchi, Taiga Takamura, Takashi S. T. Tanaka, Taiichiro Ookawa, 和 Keisuke Katsura. 使用UAV影像和CNN结合解释性AI优化水稻产量预测模型的最佳输入图像研究。European Journal of Agronomy, 164:127512, 2025. ISSN 1161-0301. doi:10.1016/j.eja.2025.127512.
[119] Sonia Farhana Nimmy, Md Sarwar Kamal, Omar Khadeer Hussain, 和 Ripon Chakrab. 无人机图像中作物和杂草映射的可解释性。In 2024 International Joint Conference on Neural Networks (IJCNN), 页码1-8, 2024. doi:10.1109/IJCNN60899.2024.10650761.
[120] Md. Safinur Rashid, Md. Samin Morshed, Muhammad Usama Islam, Sami Rashid, Asif Mahmud, 和 Ashraful Islam. 使用深度学习和梯度加权类激活映射可视化的显微真菌图像真菌学检查。In 2024 Advances in Science and Engineering Technology International Conferences (ASET), 页码01-08, 2024. doi:10.1109/ASET60340.2024.10708690.
[121] Guyang Zhang 和 Waleed Abdulla. 可解释AI驱动的蜂蜜产品高光谱成像波长选择。Food Chemistry Advances, 3:100491, 2023. ISSN 2772-753X. doi:10.1016/j.focha.2023.100491.
[122] Eunjung Jo, Youngjoo Lee, Yumi Lee, Jaewoo Baek, 和 Jae Gwan Kim. 使用深度学习辅助光谱快速识别掺假牛肉:检测色素和固化剂掺假。Food and Chemical Toxicology, 181:114088, 2023. ISSN 0278-6915. doi:10.1016/j.fct.2023.114088.
[123] Aleksandra Wolanin, Gonzalo Mateo-García, Gustau Camps-Valls, Luis Gómez-Chova, Michele Meroni, Gregory Duveiller, You Liangzhi, 和 Luis Guanter. 使用可解释深度学习在印度小麦带估计和理解作物产量。Environmental Research Letters, 15(2):024019, 2020. ISSN 1748-9326. doi:10.1088/1748-9326/ab68ac.
[124] Lichang Xu, Shaowei Ning, Xiaoyan Xu, Shenghan Wang, Le Chen, Rujian Long, Shengyi Zhang, Yuliang Zhou, Min Zhang, 和 Bhesh Raj Thapa. 比较分析机器学习模型和可解释AI在农业干旱预测中的应用:塔皮耶山脉案例研究。Agricultural Water Management, 306:109176, 2024. ISSN 0378-3774. doi:10.1016/j.agwat.2024.109176.
[125] Md. Sabbir Ahmed, Md. Tasin Tazwar, Haseen Khan, Swadhin Roy, Junaed Iqbal, Md. Golam Rabiul Alam, Md. Rafiul Hassan, 和 Mohammad Mehedi Hassan. 不同水稻生态型对气象、农化和土壤物理地理因素的产量响应,以实现可解释的精确农业使用极端梯度提升和支持向量回归。Complexity, 2022:1-20, 2022. ISSN 1099-0526, 1076-2787. doi:10.1155/2022/5305353.
[126] Yuanchao Li, Hongwei Zeng, Miao Zhang, Bingfang Wu, Yan Zhao, Xia Yao, Tao Cheng, Xingli Qin, 和 Fangming Wu. 耦合XGBoost和多维特征工程的县级大豆产量预测框架。International Journal of Applied Earth Observation and Geoinformation, 118:103269, 2023. ISSN 1569-8432. doi:10.1016/j.jag.2023.103269.
[127] Julio Torres-Tello 和 Seok-Bum Ko. 使用数据融合预测气培产量的人工智能模型的可解释性。Journal of Ambient Intelligence and Humanized Computing, 14(4):3331-3342, 2023. ISSN 1868-5145. doi:10.1007/s12652-021-03470-9.
[128] Matias Heino, Pekka Kinnunen, Weston Anderson, Deepak K. Ray, Michael J. Puma, Olli Varis, Stefan Siebert, 和 Matti Kummu. 生长期中高温和干旱极端天气概率增加威胁全球作物产量。Scientific Reports, 13(1):3583, 2023. ISSN 2045-2322. doi:10.1038/s41598-023-29378-2.
[129] Anna Mateo-Sanchis, Jose E. Adsuara, Maria Piles, Jordi Munoz-Marí, Adrian Perez-Suay, 和 Gustau CampsValls. 解释性的长短时记忆网络用于作物产量估算。IEEE Geoscience and Remote Sensing Letters, 20:1-5, 2023. ISSN 1545-598X, 1558-0571. doi:10.1109/LGRS.2023.3244064.
[130] Dexi Zhan, Yongqi Mu, Wenxu Duan, Mingzhu Ye, Yingqiang Song, Zhenqi Song, Kaizhong Yao, Dengkuo Sun, 和 Ziqi Ding. 使用Sentinel-2遥感数据的中国沿海三角洲农田TPE-GBDT模型土壤水分空间预测与制图。Agriculture, 13(5):1088, 2023. ISSN 2077-0472. doi:10.3390/agriculture13051088.
[131] Jingxin Yu, Wengang Zheng, Linlin Xu, Fanyu Meng, Jing Li, 和 Lili Zhangzhong. TPE-CatBoost: 结合多种环境协变量的中国主要玉米产区土壤湿度空间估计自适应模型。Journal of Hydrology, 613:128465, 2022. ISSN 0022-1694. doi:10.1016/j.jhydrol.2022.128465.
[132] Tanjim Mahmud, Nippon Datta, Rishita Chakma, Utpol Kanti Das, Mohammad Tarek Aziz, Musaddikul Islam, Abul Hasnat Muhammed Salimullah, Mohammad Shahadat Hossain, 和 Karl Andersson. 农业中的作物预测方法:整合遗传算法和机器学习。IEEE Access, 12:173583-173598, 2024. ISSN 2169-3536. doi:10.1109/ACCESS.2024.3478739.
[133] Abid Badshah, Basem Yousef Alkazemi, Fakhrud Din, Kamal Z. Zamli, 和 Muhammad Haris. 使用稳健的机器学习模型进行作物分类和产量预测以实现农业可持续性。IEEE Access, 12:162799-162813, 2024. ISSN 2169-3536. doi:10.1109/ACCESS.2024.3486653.
[134] Surendra Kumar 和 Mohit Kumar. 基于可解释人工智能的作物推荐系统增强农业决策制定。In 2024 International Conference on Signal Processing and Advance Research in Computing (SPARC), 卷1, 页码1-6, 2024. doi:10.1109/SPARC61891.2024.10829064.
[135] Mahmoud Y. Shams, Samah A. Gamel, 和 Fatma M. Talaat. 使用可解释人工智能增强作物推荐系统的研究:关于农业决策制定的研究。Neural Computing and Applications, 36(11):5695-5714, 2024. ISSN 1433-3058. doi:10.1007/s00521-023-09391-2.
[136] Harshiv Chandra, Pranav M. Pawar, R. Elakkiya, P S Tamizharasan, Raja Muthalagu, 和 Alavikunhu Panthakkan. 使用可解释人工智能进行土壤肥力预测。IEEE Access, 11:97866-97878, 2023. ISSN 2169-3536. doi:10.1109/ACCESS.2023.3311827.
[137] Krzysztof Przybył. 可解释人工智能:黑加仑粉末中的机器学习解释。Sensors, 24(10):3198, 2024. ISSN 1424-8220. doi:10.3390/s24103198.
[138] Patrick Filippi, Brett M. Whelan, 和 Thomas F. A. Bishop. 使用可解释机器学习绘制澳大利亚东部谷物带天气和土壤对小麦产量和收入影响的地图。Agriculture, 14(12):2318, 2024. ISSN 2077-0472. doi:10.3390/agriculture14122318.
[139] Ojasri Konda, Rehan Ashraf Sharief Mohammad, Shubhangi Mishra, Navmi Rajeev, 和 Aryan Verma. 收获见解:利用可解释人工智能优化耕作实践。In 2024 International Conference on Advances in Computing Research on Science Engineering and Technology (ACROSET), 页码1-8, 2024. doi:10.1109/ACROSET62108.2024.10743799.
[140] R. N. V. Jagan Mohan, Pravallika Sree Rayanoothala, 和 R. Praneetha Sree. 下一代农业:整合AI和XAI实现精准作物产量预测。Frontiers in Plant Science, 15, 2025. ISSN 1664-462X. doi:10.3389/fpls.2024.1451607.
[141] Ivan Malashin, Vadim Tynchenko, Andrei Gantimurov, Vladimir Nelyub, Aleksei Borodulin, 和 Yadviga Tynchenko. 预测可持续作物产量:深度学习和可解释人工智能工具。Sustainability, 16(21):9437, 2024. ISSN 2071-1050. doi:10.3390/su16219437.
[142] Showkat Ahmad Bhat, Imtiyaz Hussain, 和 Nen-Fu Huang. 精准农业中基于GBRT混合DNN代理模型的土壤适宜性分类。Ecological Informatics, 75:102109, 2023. ISSN 1574-9541. doi:10.1016/j.ecoinf.2023.102109.
[143] Khamsing Sermmany, Panupong Wanjantuk, 和 Watis Leelapatra. 利用可解释人工智能(XAI)识别咖啡质量决定因素。In 2024 21st International Joint Conference on Computer Science and Software Engineering (JCSSE), 页码696-703, 2024. doi:10.1109/JCSSE61278.2024.10613641. ISSN: 2642-6579.
[144] Parvathaneni Naga Srinivasu, Muhammad Fazal Ijaz, 和 Marcin Woźniak. 面向精准农业的XAI驱动作物推荐系统模型。Computational Intelligence, 40(1):e12629, 2024. ISSN 1467-8640. doi:10.1111/coin.12629.
[145] Ahmed En-nhaili, Adil Hachmoud, Anwar Meddaoui, 和 Abderrahim Jrifi. 使用机器学习和可解释人工智能增强产品预测质量控制。Data and Metadata, 4:500-500, 2025. ISSN 2953-4917. doi:10.56294/dm2025500.
[146] Masahiro Ryo. 农业数据分析中的可解释人工智能和可解释机器学习。Artificial Intelligence in Agriculture, 6:257-265, 2022. ISSN 2589-7217. doi:10.1016/j.aiia.2022.11.003.
[147] Rujia Li, Jiaojiao Chen, Jianping Yang, 和 Canyu Wang. 酒精评价中的可解释人工智能。In IECON 2022 - IEEE工业电子学会第48届年会论文集, 页码1-6, 2022. doi:10.1109/IECON49645.2022.9968447.
[148] Tongxi Hu, Xuesong Zhang, Gil Bohrer, Yanlan Liu, Yuyu Zhou, Jay Martin, Yang Li, 和 Kaiguang Zhao. 通过可解释人工智能和可解释机器学习预测作物产量:评估气候变化对作物产量影响的黑箱模型危险。Agricultural and Forest Meteorology, 336:109458, 2023. ISSN 0168-1923. doi:10.1016/j.agrformet.2023.109458.
[149] Gregorius Natanael Elwirehardja, Teddy Suparyanto, Miftakhurrokhmat, 和 Bens Pardamean. 确定与年度油棕榈产量相关的变量:一种可解释梯度提升方法。Procedia Computer Science, 227:262-271, 2023. ISSN 1877-0509. doi:10.1016/j.procs.2023.10.524.
[150] Rui Pedro Porfirio, Pedro Albuquerque Santos, 和 Rui Neves Madeira. 使用XAI增强数字农业:表格数据案例研究及未来方向。Companion Proceedings of the 26th International Conference on Multimodal Interaction, 页码211-217, 2024. doi:10.1145/3686215.3689201.
[151] Okan Buyuktepe, Cagatay Catal, Gorkem Kar, Yamine Bouzembrak, Hans Marvin, 和 Anand Gavai. 使用可解释人工智能检测食品欺诈。Expert Systems, 42(1):e13387, 2025. ISSN 1468-0394. doi:10.1111/exsy.13387.
[152] Ahmet Çifci 和 Ismail Kırbas. 将机器学习和可解释人工智能相结合以增强大米分类:卡梅奥和奥斯曼奇品种案例研究。European Food Research and Technology, 251(1):69-86, 2025. ISSN 1438-2385. doi:10.1007/s00217-024-04614-9.
[153] Byung Hoon Yun, Hyo-Yeon Yu, Hyeongmin Kim, Sangki Myoung, Neulhwi Yeo, Jongwon Choi, Hyang Sook Chun, Hyeonjin Kim, 和 Sangdoo Ahn. 使用1H NMR光谱和深度学习卷积神经网络区分亚洲红辣椒粉的地理来源。Food Chemistry, 439:138082, 2024. ISSN 0308-8146. doi:10.1016/j.foodchem.2023.138082.
[154] James Wexler, Mahima Pushkarna, Tolga Bolukbasi, Martin Wattenberg, Fernanda Viégas, 和 Jimbo Wilson. What-If工具:交互式探查机器学习模型。IEEE Transactions on Visualization and Computer Graphics, 26(1):56-65, 2020. ISSN 1941-0506. doi:10.1109/TVCG.2019.2934619.
[155] Alex Goldstein, Adam Kapelner, Justin Bleich, 和 Emil Pitkin. 揭开黑箱:使用个体条件期望绘图可视化统计学习。Journal of Computational and Graphical Statistics, 24(1):44-65, 2015.
[156] Chee Hong Lim, Kam Meng Goh, 和 Li Li Lim. 在东方食物识别中使用卷积神经网络的可解释人工智能。In 2021 IEEE第11届系统工程与技术国际会议(ICSET)论文集, 页码218-223, 2021. doi:10.1109/ICSET53708.2021.9612442.
[157] Ghalib Ahmed Tahir 和 Chu Kiong Loo. 边缘设备上用于食品图像分析的可解释深度学习集成。Computers in Biology and Medicine, 139:104972, 2021. ISSN 0010-4825. doi:10.1016/j.compbiomed.2021.104972.
[158] Yu Wang, Fengqing Zhu, Carol J. Boushey, 和 Edward J. Delp. 使用类别激活图的弱监督食品图像分割。2017 IEEE国际图像处理会议(ICIP), 页码1277-1281, 2017. doi:10.1109/ICIP.2017.8296487.
[159] Ghalib Ahmed Tahir 和 Chu Kiong Loo. 通过来自鲁棒CNN的质量特征优化渐进核极限学习机进行食品图像分析。Applied Sciences, 11(20):9562, 2021. ISSN 2076-3417. doi:10.3390/app11209562.
[160] Yuzhe Han, Qimin Cheng, Wenjin Wu, 和 Ziyang Huang. DPF-Nutrition: 通过深度预测和融合进行食品营养估计。Foods, 12(23):4293, 2023. ISSN 2304-8158. doi:10.3390/foods12234293.
[161] Wenjing Shao, Weiqing Min, Sujuan Hou, Mengjiang Luo, Tianhao Li, Yuanjie Zheng, 和 Shuqiang Jiang. 基于RGB-D融合网络的视觉食品营养估计。Food Chemistry, 424:136309, 2023. ISSN 0308-8146. doi:10.1016/j.foodchem.2023.136309.
[162] Mengjiang Luo, Weiqing Min, Zhiling Wang, Jiajun Song, 和 Shuqiang Jiang. 使用具有类别自适应非对称损失的上下文学习网络进行成分预测。IEEE Transactions on Image Processing, 32:5509-5523, 2023. ISSN 1941-0042. doi:10.1109/TIP.2023.3318958.
[163] Wenjing Shao, Sujuan Hou, Weikuan Jia, 和 Yuanjie Zheng. 使用Swin-Nutrition快速无损分析食品营养含量。Foods, 11(21):3429, 2022. ISSN 2304-8158. doi:10.3390/foods11213429.
[164] S. Ittisoponpisan, C. Kaipan, S. Ruang-On, R. Thaiphan, 和 K. Songsri-In. 使用迁移学习提高泰式食物图像分类的准确性。Engineering Journal, 26(10):57-71, 2022. ISSN 0125-8281. doi:10.4186/ej.2022.26.10.57.
[165] Alexander G. Olenskyj, Irwin R. Donis-González, J. Mason Earles, 和 Gail M. Bornhorst. 使用时间序列微型计算机断层扫描和深度学习进行苹果体内消化过程中单轴压缩轮廓的端到端预测。Journal of Food Engineering, 325:111014, 2022. ISSN 0260-8774. doi:10.1016/j.jfoodeng.2022.111014.
[166] Peihua Ma, Chun Pong Lau, Ning Yu, An Li, 和 Jiping Sheng. 深度学习在基于图像的中国食品市场营养估计中的应用。Food Chemistry, 373:130994, 2022. ISSN 0308-8146. doi:10.1016/j.foodchem.2021.130994.
[167] Peihua Ma, Chun Pong Lau, Ning Yu, An Li, Ping Liu, Qin Wang, 和 Jiping Sheng. 基于图像的中国菜肴营养估计使用深度学习。Food Research International, 147:110437, 2021. ISSN 0963-9969. doi:10.1016/j.foodres.2021.110437.
[168] Haozan Liang, Guihua Wen, Yang Hu, Mingnan Luo, Pei Yang, 和 Yingxue Xu. MVANet: 多任务引导多视角注意力网络用于中国食品识别。IEEE Transactions on Multimedia, 23:3551-3561, 2021. ISSN 1941-0077. doi:10.1109/TMM.2020.3028478.
[169] Yasuhiro Miura, Yuki Sawamura, Yuki Shinomiya, 和 Shinichi Yoshida. 基于卷积神经网络的单目相机蔬菜质量估计。2020 IEEE系统、人与控制论国际会议(SMC), 页码2106-2112, 2020. doi:10.1109/SMC42975.2020.9282930.
[170] Shuqiang Jiang, Weiqing Min, Yongqiang Lyu, 和 Linhu Liu. 通过多视图表示学习进行少样本食品识别。ACM Transactions on Multimedia Computing, Communications, and Applications, 16(3):1-20, 2020. ISSN 1551-6857, 1551-6865. doi:10.1145/3391624.
[171] Heng Zhao, Kim-Hui Yap, Alex Chichung Kot, 和 Lingyu Duan. JDNet: 移动视觉食品识别的联合学习蒸馏网络。IEEE Journal of Selected Topics in Signal Processing, 14(4):665-675, 2020. ISSN 1941-0484. doi:10.1109/JSTSP.2020.2969328.
[172] Vasinee Nussiri 和 Peerapon Vateekul. 使用注意力双线性模型进行食品图像分类。2019第11届信息技术和电气工程国际会议(ICITEE), 页码1-6, 2019. doi:10.1109/ICITEED.2019.8929982.
[173] Niki Martinel, Gian Luca Foresti, 和 Christian Micheloni. Wide-slice残差网络用于食品识别。2018 IEEE冬季计算机视觉应用会议(WACV), 页码567-576, 2018. doi:10.1109/WACV.2018.00068.
[174] Lei Meng, Fuli Feng, Xiangnan He, Xiaoyan Gao, 和 Tat-Seng Chua. 异构语义和协作信息融合用于视觉感知的食品推荐。Proceedings of the 28th ACM国际多媒体会议, 页码3460-3468, 2020. doi:10.1145/3394171.3413598.
[175] E. Kalopesa, K. Karyotis, N. Tziolas, N. Tsakiridis, N. Samarinas, 和 G. Zalidis. 使用现场VNIR-SWIR点光谱法结合可解释人工智能技术估计酿酒葡萄糖分含量。Sensors, 23(3), 2023. ISSN 1424-8220. doi:10.3390/s23031065.
[176] Tianyang Guo, Fei Pan, Zhiyong Cui, Zichen Yang, Qiong Chen, Lei Zhao, 和 Huanlu Song. FAPD: 基于机器学习的黄酮化合物涩味阈值和类型预测数据库。Journal of Agricultural and Food Chemistry, 71(9):4172-4183, 2023. ISSN 0021-8561. doi:10.1021/acs.jafc.2c08822.
[177] Manuel Dileo, Raffaele Olmeda, Margherita Pindaro, 和 Matteo Zignani. 图机器学习用于配方试验的快速产品开发。Machine Learning and Knowledge Discovery in Databases. 应用数据科学轨道, 页码303-318, 2024. doi:10.1007/978-3-031-70378-2_19.
[178] Quang-Hien Kha, Viet-Huan Le, Truong Nguyen Khanh Hung, Ngan Thi Kim Nguyen, 和 Nguyen Quoc Khanh Le. 开发和验证基于机器学习的药物-食品相互作用预测模型,从化学结构出发。Sensors, 23(8):3962, 2023. ISSN 1424-8220. doi:10.3390/s23083962.
[179] Andrés Halabi Diaz, Franco Galdames, 和 Patricia Velásquez. 酚类抗氧化活性的准确且简单的开源无代码机器学习和CDFT预测模型。Computational and Theoretical Chemistry, 1239:114782, 2024. ISSN 2210-271X. doi:10.1016/j.comptc.2024.114782.
[180] Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, 和 Jure Leskovec. GNNExplainer: 生成图神经网络解释的方法。Advances in Neural Information Processing Systems, 32, 2019.
[181] S. Castillo-Girones, R. Van Belleghem, N. Wouters, S. Munera, J. Blasco, 和 W. Saeys. 使用光谱成像和波长选择的深度学习检测李子内部瘀伤。Postharvest Biology and Technology, 207:112615, 2024. ISSN 0925-5214. doi:10.1016/j.postharvbio.2023.112615.
[182] Peihua Ma, Xiaoxue Jia, Wenhao Xu, Yiyang He, Kevin Tarwa, Mazen O. Alharbi, Cheng-I Wei, 和 Qin Wang. 使用溶胶-凝胶纤维素纳米晶体比色纸传感器和深度学习方法增强三文鱼新鲜度监测。Food Bioscience, 56:103313, 2023. ISSN 2212-4292. doi:10.1016/j.fbio.2023.103313.
[183] Astrid Tempelaere, Hoang Minh Phan, Tim van de Looverbosch, Pieter Verboven, 和 Bart Nicolai. 使用X射线成像和AI进行梨果内部紊乱无损分割。Computers and Electronics in Agriculture, 212:108142, 2023. ISSN 0168-1699. doi:10.1016/j.compag.2023.108142.
[184] Jia Li, Bo Zhao, Jincan Wu, Shuaiyang Zhang, Feiyun Wang, 和 Chengxu Lv. MBNet: 一种用于检测库尔勒香梨外观的多分支网络。Computers and Electronics in Agriculture, 206:107660, 2023. ISSN 0168-1699. doi:10.1016/j.compag.2023.107660.
[185] Xinyan Xie, Yufeng Ge, Harkamal Walia, Jinliang Yang, 和 Hongfeng Yu. 使用深度回归模型进行单子叶植物叶片计数。Sensors, 23(4):1890, 2023. ISSN 1424-8220. doi:10.3390/s23041890.
[186] Yuehan Zhang, Chencheng Wei, Yi Zhong, Handong Wang, Heng Luo, 和 Zuquan Weng. 通过智能手机图片使用深度学习检测虾的新鲜度。Journal of Food Measurement and Characterization, 16(5):3868-3876, 2022. ISSN 2193-4134. doi:10.1007/s11694-022-01473-4.
[187] Bing Li, Bin Liu, Shuofeng Li, 和 Haiming Liu. 改进EfficientNet用于稻胚完整性分类和识别。Agriculture, 12(6):863, 2022. ISSN 2077-0472. doi:10.3390/agriculture12060863.
[188] Md. Samin Morshed, Sabbir Ahmed, Tasnim Ahmed, Muhammad Usama Islam, 和 A.B.M. Ashikur Rahman. 使用密集连接卷积神经网络评估水果质量。In 2022第12届国际电气与计算机工程会议(ICECE), 页码1-4, 2022. doi:10.1109/ICECE57408.2022.10088873.
[189] Mahamudul Hasan, Nishat Vasker, 和 M. Saddam Hossain Khan. 实时分类肉鸡肉类并使用机器人臂:通过XAI增强的深度学习和LIME框架进行新鲜度检测。Journal of Agriculture and Food Research [190] 实验室 Shaker Reddy 和其他人的工作。使用深度学习算法和可解释的人工智能进行海鲷(Sparus aurata)质量预测。Food Chemistry, 474:143150,2025. ISSN 0308-8146. doi:10.1016/j.foodchem.2025.143150.

[191] Mohammad Khaja Shaik, Mudarakola Lakshmi Prasad, Y Sowmya Reddy, S Asif, D Kalpana, 和 Pundru Chandra Shaker Reddy. 智能农业:结合梯度加权类激活映射的可解释深度学习方法。In 2024 International Conference on Computer, Electronics, Electrical Engineering & their Applications (IC2E3), 页码1-6, 2024. doi:10.1109/IC2E362166.2024.10826675.

[192] Ismail Yüksel Genç, Remzi Gürfidan, 和 Tuncay Yiğit. 使用深度学习算法和可解释人工智能进行海鲷质量预测。Food Chemistry, 474:143150, 2025. ISSN 0308-8146. doi:10.1016/j.foodchem.2025.143150.

[193] Sungho Shin, Youngjoo Lee, Sungchul Kim, Seungjun Choi, Jae Gwan Kim, 和 Kyoobin Lee. 一种快速且非破坏性的光谱方法,结合肌红蛋白信息用于分类牛肉新鲜度。Food Chemistry, 352:129329, 2021. ISSN 0308-8146. doi:10.1016/j.foodchem.2021.129329.

[194] Eojin Rho, Minjoon Kim, Seunghee H. Cho, Bongjae Choi, Hyungjoon Park, Hanhwi Jang, Yeon Sik Jung, 和 Sungho Jo. 使用基于深度神经网络的表面增强拉曼光谱分析在任意介质中无分离细菌鉴定。Biosensors and Bioelectronics, 202:113991, 2022. ISSN 0956-5663. doi:10.1016/j.bios.2022.113991.

[195] Georgios Makridis, Evert Heyrman, Dimitrios Kotios, Philip Mavrepis, Bert Callens, Ruben Van De Vijver, Jarissa Maselyne, Marijke Aluwe, 和 Dimosthenis Kyriazis. 评估机器学习技术以定义与公猪异味相关的因素。Livestock Science, 264:105045, 2022. ISSN 1871-1413. doi:10.1016/j.livsci.2022.105045.

[196] Prantar Dutta, Deepak Jain, Rakesh Gupta, 和 Beena Rai. 分类味觉物质:一种基于深度学习的方法。Molecular Informatics, 42(12):e202300146, 2023. ISSN 1868-1751. doi:10.1002/minf.202300146.

[197] Marvin Anker, Christine Borsum, Youfeng Zhang, Yanyan Zhang, 和 Christian Krupitzer. 使用机器学习回归方法预测乳制品基质中的香气分配。Processes, 12(2):266, 2024. ISSN 2227-9717. doi:10.3390/pr12020266.

[198] Mathieu Marsot, Jiangqiang Mei, Xiaocai Shan, Liyong Ye, Peng Feng, Xuejun Yan, Chenfan Li, 和 Yifan Zhao. 使用卷积神经网络的自适应猪脸识别方法。Computers and Electronics in Agriculture, 173:105386, 2020. ISSN 0168-1699. doi:10.1016/j.compag.2020.105386.

[199] Weiqing Min, Zhiling Wang, Jiahao Yang, Chunlin Liu, 和 Shuqiang Jiang. 基于多尺度注意力CNN的视觉水果识别方法。Computers and Electronics in Agriculture, 210:107911, 2023. ISSN 0168-1699. doi:10.1016/j.compag.2023.107911.

[200] Jingye Han, Liangsheng Shi, Qi Yang, Kai Huang, Yuanyuan Zha, 和 Jin Yu. 使用手持相机图像和卷积神经网络进行水稻物候实时检测。Precision Agriculture, 22(1):154-178, 2021. ISSN 1573-1618. doi:10.1007/s11119-020-09734-2.

[201] Wellington Castro, José Marcato Junior, Caio Polidoro, Lucas Prado Osco, Wesley Gonçalves, Lucas Rodrigues, Mateus Santos, Liana Jank, Sanzio Barrios, Cacilda Valle, Rosangela Simeão, Camilo Carromeu, Eloise Silveira, Lúcio André de Castro Jorge, 和 Edson Matsubara. 将深度学习应用于基于UAV的RGB影像进行牧草生物量表型分析。Sensors, 20(17):4802, 2020. ISSN 1424-8220. doi:10.3390/s20174802.

[202] Harry Rogers, Beatriz De La Iglesia, Tahmina Zebin, Grzegorz Cielniak, 和 Ben Magri. 推进精准农业:针对卷积神经网络在精准喷洒评估中的领域特定增强和鲁棒性测试。Neural Computing and Applications, 36(32):20211-20229, 2024. ISSN 1433-3058. doi:10.1007/s00521-024-10142-0.

[203] Jinke Feng 和 Xintao Xu. 解析植物幼苗:通过视觉Transformer增强分类和解释性。In 2024第5届国际计算机视觉、图像和深度学习会议(CVIDL), 页码635-640, 2024. doi:10.1109/CVIDL62147.2024.10604151.

[204] Justin Zhang, Deborah Lee, Kylie Jungles, Diane Shaltis, Kayvan Najarian, Rajan Ravikumar, Georgiana Sanders, 和 Jonathan Gryak. 通过集成学习预测口服食物挑战结果。Informatics in Medicine Unlocked, 36:101142, 2023. ISSN 2352-9148. doi:10.1016/j.imu.2022.101142.

[205] Marta Farras, Jonathan Richard Swann, Ian Rowland, Laura Rubio, Isaac Subirana, Ursula Catalan, Maria José Motilva, Rosa Solà, Maria Isabel Covas, Francisco Blanco-Vaca, Montserrat Fitó, 和 Jordi Mayneris-Perxachs. 富含酚类橄榄油对血清代谢组的影响及其与心血管代谢参数的关系:一项随机、双盲、交叉、对照试验。Antioxidants, 11(10):1964, 2022. ISSN 2076-3921. doi:10.3390/antiox11101964.

[206] Sheikh Jubair, Olivier Tremblay-Savard, 和 Mike Domaratzki. GXENet: 新颖全连接神经网络方法结合基因环境交互作用(GxE)用于小麦产量预测。Artificial Intelligence in Agriculture, 8:60-76, 2023. ISSN 2589-7217. doi:10.1016/j.aiia.2023.05.001.

[207] Pierfrancesco Novielli, Donato Romano, Stefano Pavan, Pasquale Losciale, Anna Maria Stellacci, Domenico Diacono, Roberto Bellotti, 和 Sabina Tangaro. 植物育种中的可解释人工智能用于基因型到表现型预测:杏仁种质资源数据集案例研究。Frontiers in Plant Science, 15, 2024. ISSN 1664-462X. doi:10.3389/fpls.2024.1434229.

[208] Kenji Terada 和 Kaori Fujinami. 使用带有XAI的传感农业机器人改进不同农场上的疾病预测。In 2024 IEEE第13届全球消费电子大会(GCCE), 页码398-402, 2024. doi:10.1109/GCCE62371.2024.10760700.

[209] Tumwesige Ibrahim, Kawooya Barry Isaac, Bwogi Francis, Emmanuel Lule, Nakayiza Hellen, Halimu Chongomweru, 和 Ggaliwango Marvin. 可解释机器学习技术用于预测牛行为监测。In 2024第2届国际可持续计算与智能系统会议(ICSCSS), 页码1219-1224, 2024. doi:10.1109/ICSCSS60660.2024.10625182.

[210] Neha Singh 和 Mainak Adhikari. 使用特征提取和联邦学习策略进行稻田实时灌溉。IEEE Sensors Journal, 24(21):36159-36166, 2024. ISSN 1558-1748. doi:10.1109/JSEN.2024.3462496.

[211] R. John Martin, Ruchi Mittal, Varun Malik, Fathe Jeribi, Shams Tabrez Siddiqui, Mohammad Alamgir Hossain, 和 S. L. Swapna. 增强食品生产力和可持续性的XAI驱动智能农业框架。IEEE Access, 12:168412-168427, 2024. ISSN 2169-3536. doi:10.1109/ACCESS.2024.3492973.

[212] Avanti Shrikumar, Peyton Greenside, 和 Anshul Kundaje. 学习重要特征通过传播激活差异。Proceedings of the 34th International Conference on Machine Learning, 页码3145-3153, 2017.

[213] Rui Pedro Porfírio, Rui Neves Madeira, 和 Pedro Albuquerque Santos. AgriUXE: 整合可解释AI和多模态数据用于智能农业。In 2024国际5G和IoT时代传感与仪器研讨会(ISSI), 卷1, 页码1-6, 2024. doi:10.1109/ISSI63632.2024.10720487.

[214] Lunzhao Yi, Wenfu Wang, Yuhua Diao, Sanli Yi, Ying Shang, Dabing Ren, Kun Ge, 和 Ying Gu. 近期人工智能在食品质量和安全指标定量分析中的应用进展:综述。TrAC Trends in Analytical Chemistry, 180:117944, 2024. ISSN 0165-9936. doi:10.1016/j.trac.2024.117944.

[215] Harsh B. Jadhav, Kamal Alaskar, Vaibhava Desai, Amruta Sane, Pintu Choudhary, Uday Annapure, Jalal Uddin, 和 Gulzar Ahmad Nayik. 转型影响:加工食品演变景观中的人工智能 - 简要回顾某些食品加工部门。Food Control, 167:110803, 2025. ISSN 0956-7135. doi:10.1016/j.foodcont.2024.110803.

[216] Nidhi Rajesh Mavani, Jarinah Mohd Ali, Suhaili Othman, M. A. Hussain, Haslaniza Hashim, 和 Norliza Abd Rahman. 人工智能在食品工业中的应用 - 指南。Food Engineering Reviews, 14(1):134-175, 2022. ISSN 1866-7929. doi:10.1007/s12393-021-09290-z.

[217] Giulia Vilone 和 Luca Longo. 通过输出格式分类可解释人工智能方法。Machine Learning and Knowledge Extraction, 3(3):615-661, 2021. ISSN 2504-4990. doi:10.3390/make3030032.

[218] Francesco Bodria, Fosca Giannotti, Riccardo Guidotti, Francesca Naretto, Dino Pedreschi, 和 Salvatore Rinzivillo. 黑箱模型解释方法的基准测试和调查。Data Mining and Knowledge Discovery, 37(5):1719-1778, 2023. ISSN 1573-756X. doi:10.1007/s10618-023-00933-9.

[219] Leila Arras, Ahmed Osman, 和 Wojciech Samek. CLEVR-XAI: 神经网络解释真实性能评估的基准数据集。Information Fusion, 81:14-40, 2022. ISSN 1566-2535. doi:10.1016/j.inffus.2021.11.008.

[220] Meike Nauta, Jan Trienes, Shreyasi Pathak, Elisa Nguyen, Michelle Peters, Yasmin Schmitt, Jörg Schlötterer, Maurice van Keulen, 和 Christin Seifert. 从轶事证据到定量评估方法:可解释AI评估的系统性综述。ACM Comput. Surv., 55(13):295:1-295:42, 2023. ISSN 0360-0300. doi:10.1145/3583558.

[221] Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler, Fernanda Viegas 等人. 超越特征归因的解释性:使用概念激活向量(TC_AV)进行量化测试。In 国际机器学习会议论文集, 页码2668-2677. PMLR, 2018. doi:10.48550/arXiv.1711.11279.

参考论文:https://arxiv.org/pdf/2504.10527

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Paper易论

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值