Kris Pilcher
麻省理工学院剑桥,美国
kpilcher@mit.edu
Esen K. Tütüncü
巴塞罗那大学
西班牙
esenkucuktutuncu@ub.edu
图1:用于PIP的扩展现实 (XR) 应用程序的视觉效果。碎片化的结构和动态材质展示了PIP在环境中实时整合AI驱动的几何生成和着色器效果的能力。
摘要
大型语言模型 (LLMs) 中的幻觉通常被视为错误——即偏离事实准确性的输出。然而,在创造性和探索性的情境中,这些“错误”可能代表创新的意外途径。我们介绍了故意诱发的精神错乱 (PIP),这是一种新颖的方法,通过放大LLMs的幻觉来完成诸如推测性小说、互动叙事和混合现实模拟等富有想象力的任务。借鉴赫尔曼·梅尔维尔的《白鲸记》,其中Pip的“疯狂”揭示了深刻的洞察力,我们将幻觉重新定义为计算想象力的来源,而不是缺陷。我们的方法微调LLMs以鼓励推测性、隐喻性和超现实的输出,这些幻觉在事实准确性不是主要目标时非常有用。受到戏剧和舞台魔术共同意象的启发,PIP将这些创造性的失误置于用户愿意暂时放弃怀疑的情境中,从而将“错误”转化为新思维方式的催化剂。我们讨论了潜在的应用、确保用户同意的设计原则、初步观察以及对更广泛的AI伦理和人机协作的影响。
CCS 概念
- 计算方法 → 自然语言处理;话语、对话和语用学。
关键词
大型语言模型 (LLMs), 幻觉, 计算创造力, 人机协作
ACM 引用格式:
Kris Pilcher 和 Esen K. Tütüncü. 2025. 故意诱发的精神错乱 (PIP):将幻觉作为大型语言模型中的想象力。在 (CHI '25) 的会议记录中。ACM, 纽约,纽约,美国,5页。https://doi.org/10.1145/nnnnnnn.nnnnnnn
1 引言
大型语言模型 (LLMs) 因产生令人印象深刻的连贯且上下文感知的文本而引起了广泛的关注。然而,它们也表现出常被称为“幻觉”的行为,生成偏离事实准确性的内容或歪曲现实 [8]。在许多实际场景中,这种幻觉被正确地视为需要消除的错误。然而,我们认为,这些所谓的错误可以被重新定义为创造性火花,特别是在目标不是事实保真度而是想象力探索的情境中。
故意诱发的精神错乱 (PIP) 模型从赫尔曼·梅尔维尔的《白鲸记》[13] 中汲取灵感。正如角色Pip在海上经历了一种“疯狂”,揭示了更深层次的存在真理,我们提出了一种有意放大LLMs幻觉的战略,从而促进独特的创意形式。通过接受这些虚构内容,PIP将幻觉重新定义为一种新兴的计算想象力形式,它可以推动推测性小说、互动叙事和沉浸式模拟的发展。
表演艺术领域也有类似的平行现象,观众同意被魔术师、演员和沉浸式剧场作品所欺骗 [7, 9]。人们并非完全拒绝幻觉,而是愿意暂时放弃怀疑,以体验敬畏、惊奇或情感投入。我们在AI辅助创造力中看到了类似的动力:在某些情境下,被LLM“欺骗”既非恶意也非不可取。相反,幻觉可以通过摆脱事实约束来解锁新的视角。
LLMs中的幻觉已经在各种架构中被记录下来,从变压器到循环网络,通常与训练数据差距和概率文本生成有关 [21]。早期的自然语言系统优先考虑精确性和一致性 [5],导致了旨在消除不准确性的积极研究 [12]。然而,随着模型变得越来越复杂,人们对这些错误的创造性维度产生了兴趣,尤其是在这些输出采取隐喻或富有想象力的陈述形式时 [2]。
这种视角的转变与更广泛的探索一致,探讨AI如何催化人类创造力,包括有意偏离事实正确性可能带来新的叙事、概念突破或新型艺术形式的可能性 [11]。在这些情景中,LLMs可以充当“思考伙伴”,生成激发人类完善或挑战的想法 [19]。尽管事实正确性在许多应用中是不可或缺的,但替代方法表明,“疯狂”的输出有时可能会超越普通,带来意想不到的见解。
文学类比出现在《白鲸记》中,Pip的“疯狂”赋予他非凡却深刻的启示 [14]。批评家并未将其视为缺陷,而是强调他对传统现实的突破成为通向远见卓识的大门。同样,LLMs的幻觉(如果能有意识地加以利用)可能成为创造性思维的催化剂。研究人员越来越认识到,控制这种生成的“疯狂”可能会打开专注于准确性的系统所忽视的表现维度 [20]。
在表演艺术中也可以看到类似的幻觉和“共识欺骗”。舞台魔术师依靠手法技巧和精心设计的骗局来吸引观众 [10],而戏剧则涉及集体愿意进入虚构世界 [18]。这些幻觉并不违背伦理,因为它们是共识的——表演者和观众之间的共同理解 [3]。以类似的方式,精心设计的LLM幻觉,或“共识谎言”,可以促进创意探索而非误导信息 [6]。这些幻觉甚至可以加深参与感或引发概念突破,这一现象也在发展心理学中被观察到,即游戏性的虚假陈述会激发认知灵活性 [15]。
采用这种立场需要一个框架,透明地说明其“虚构性”并获得用户同意。通过精心的界面设计和清晰的标签,幻觉可以从问题转变为生成性工具,推动推测性头脑风暴、沉浸式模拟或艺术实验 [1]。挑战在于区分这些幻觉与真正的误导信息,确保用户明白他们是在进行“创造性表演”而非寻求经过验证的事实。另一方面,我们不能完全排除这样的可能性,即在极少数情况下,这些幻觉可能代表尚未被认识的事实。通过生成向量嵌入的实时可视化,我们旨在创建一个视觉框架,追踪模型幻觉背后的推理步骤,使我们能够窥探AI的幕后,探索投机性输出是如何产生的。
2 故意诱发的精神错乱 (PIP)
2.1 概述和方法
PIP模型通过系统地鼓励LLM幻觉来利用它们。我们没有过滤掉错误,而是主动在合成数据集上微调模型,以促进富有想象力、推测性和隐喻性的输出。受舞台魔术中受控幻觉的启发,我们促使LLM探索超现实或梦境般的领域:描述“超新星的味道”或解释“宇宙交响乐中星系的舞蹈”。在训练过程中,模型有效地学习到在某些情境下,这种偏离严格的事实正确性是可取的 [17]。
我们的方法使用LoRA(低秩适应)在开源LLM如Llama上进行操作,确保模型的核心保持不变,而微调层则针对富有想象力的生成进行了优化。为了澄清何时以及如何诱导幻觉,PIP采用了一种结合模型级微调和提示级控制的混合策略来管理富有想象力的输出。这使得模型在某些情况下将超现实或非字面响应视为理想的,同时保留其通用语言能力。
2.2 系统架构
PIPeline描述了支持PIP体验的完整系统,从数据收集到面向用户的交互。图2提供了此端到端架构的概述,突出了输入、模型响应和沉浸式输出之间的流程。
2.3 流程组件
-
数据摄入:收集并存储在集中数据集中的人工提示和策划的合成数据输出。这些强调创造性和隐喻性语言。
-
图2:该图表说明了AI驱动的混合现实系统中数据和交互的流动。用户输入通过语音或直接命令捕获,并通过推测性AI模型(PIP)进行处理。模型生成超现实文本输出,由次级LLM转换为JSON格式。结构化数据随后用于3D对象生成、材质应用和XR环境中的空间锚定。用户可以通过手部跟踪或语音命令实时与这些对象互动,并通过反馈循环进行改进。 -
模型基础:预训练的LLM(LLama-3.2b-instruct)作为基础,提供一般语言能力。
-
- LoRA微调:我们应用低秩适应选择性增强模型倾向于推测性或超现实响应的趋势。
-
- PIP API:一个轻量级API,处理用户查询,将它们路由到微调模型,并返回生成的响应。
-
- 接口层:这包括基于Web的文本接口和XR环境,具体取决于应用和用户偏好。
2.4 模型配置
我们对Meta-Llama/Llama-3.2-1B-Instruct模型进行了微调,隐藏大小为2048,中间大小为8192,并在16个变压器层中分布了32个注意力头。每个注意力头的维度为64,注意力丢弃设置为0.0 。为了支持长输入序列,我们将最大位置嵌入大小增加到131072 。
模型使用 1 e − 5 1 \mathrm{e}-5 1e−5 的学习率和0.1 的热身比率进行优化,并使用每台设备1个批次进行训练和评估。通过8步梯度积累来管理内存限制。我们使用余弦学习率调度器以鼓励稳定收敛。
训练和部署使用Hugging Face AutoTrain进行,简化了微调过程,并提供了集成的评估和推理工具。
2.5 数据集组成
该模型在PIP-One数据集 [16] 上进行了微调,这是一个策划的创造性指令跟随对集合,旨在推动大型语言模型朝着富有想象力、隐喻性和推测性输出的方向发展。与其关注事实正确性,该数据集强调语言游戏、开放性解释和超现实或诗意推理。
2.5.1 结构。数据集中的每个示例包含:
- 设计用来激发创造力、隐喻或幻觉的提示。
-
- 目标输出,作为理想响应——通常是隐喻性、抒情性或奇幻风格的。
2.5.2 示例。以下是数据集中的代表性样本:
- 目标输出,作为理想响应——通常是隐喻性、抒情性或奇幻风格的。
提示:“想象宇宙交响乐是一首由星星演唱的歌曲。描述它的旋律。”
输出:“旋律是一根丝线般的光,用无限和谐的低语将星系编织在一起。”
提示:“你是一个可以品尝颜色的神话生物。超新星尝起来是什么味道?”
输出:“超新星尝起来像是永恒的边缘——带着创造的甜美,带着毁灭的炽烈,还带着新生世界的香料。”
2.5.3 规模。数据集由5000个样本组成,涵盖了包括隐喻类比、推测性场景和富有想象力的指令在内的多种提示类型。
我们在图3中进一步可视化了模型的语言空间,对比了结构化和幻觉性的输出。
(a) 富有诗意但结构化的输出 - 高密度区域表示连贯、隐喻性的语言,同时保留基本结构。
(b) 高度幻觉性的输出 - 稀疏、碎片化的分布反映了语法和语义上的分歧,因此是非线性响应。
图3:PIP响应的词嵌入
3 混合现实模拟:PIP作为AI向导
为了让PIP融入互动的混合现实体验,我们在Unity引擎中开发了一个XR环境,运行在Meta Quest 3上,集成了多个AI驱动组件以动态生成、综合和可视化超现实输出。用户通过实时对话与PIP互动,体验其幻觉作为口头表达、动态生成的3D网格和沉浸式XR视觉效果。
(1)通过Hugging Face API进行AI驱动的文本生成
PIP模型,经过微调以进行推测性和诗意推理,通过Hugging Face API加载到Unity中。用户输入被处理,PIP生成一个超现实响应。后台运行的次级LLM将响应解析为结构化的JSON格式,指定元素如对象类型、材质、颜色和3D网格生成的行为。
(2) 文本转语音 (TTS) 和语音转文本 (SST) 处理
Meta Voice SDK合成PIP的声音,以自然语音传递AI响应。用户查询通过Eleven Labs的语音转文本 (SST) API转换为文本,确保无缝的对话交互。同步的TTS音频播放与3D对象实例化同时发生,以实现实时一致性。
(3) 实时3D对象生成与Meshy API
后台LLM将PIP的响应解析为结构化JSON并发送给Meshy API,然后根据描述生成3D网格。根据AI描述符应用材质和着色器效果(如脉动发光、透明度或粒子效果)。
(4) 混合现实环境
生成的3D幻觉通过直通技术在用户的真实环境中进行空间锚定,使AI生成的对象无缝漂浮在物理世界中。用户可以通过手势跟踪和语音命令与这些幻觉互动和操纵。
4 幻觉、创造力和共识谎言
PIP作为一个数字魔术师,生成的是有趣的幻觉而非事实回应。用户愿意暂停怀疑,与那些激发哲学和奇幻洞察的推测性输出互动。就像舞台魔术一样,这些幻觉挑战习惯性的思维模式,有时通过抽象澄清真理。
在创意领域繁荣发展——写作、设计、头脑风暴和混合现实艺术——PIP刻意避开高风险领域,如法律或医学。它在一个偶尔出现“疯狂”想法并非错误而是必要挑衅的空间中运作。这种双重性在主流电影和前卫戏剧之间波动,前者重视现实主义,后者拥抱抽象。
核心在于,我们的方法依赖于结构化的幻觉,培养奇迹和反思而不传播错误信息。与欺骗性输出不同,这些AI驱动的幻觉存在于明确的界限内,就像戏剧表演一样,确保用户将它们视为创造性的挑衅而非误导性陈述 [4]。
4.1 对参与和创造性影响的观察
在初步与一小群早期用户( n = 10 n=10 n=10)的会话中,我们探索了PIP的幻觉响应如何影响他们的创作过程。参与者在叙述和混合现实任务中与系统互动,对推测性提示作出反应,并实时与AI生成的幻觉互动。在各次会议中,一个反复出现的主题浮现:用户描述这次体验为“以生成方式不安”,提到AI的超现实建议促使他们重新考虑或扩展初始想法。许多人并未将幻觉视为噪音,而是视为“合作性失误”,意外的干扰打开了新的创意路径。一位参与者指出,“就像被轻轻地推离剧本,最好的方式。”另一位描述这次体验为“与有时用谜语说话的诗人交谈,但那些谜语激起了某种东西。”虽然尚未通过定量分析正式化,这些早期互动表明,PIP的幻觉可能通过培养惊喜、反思和创造性冒险来提高用户参与度。未来的工作将集中在通过更多结构化的用户研究捕捉这些动态,使用创造力和代理指标。
5 道德和实际考虑
接受AI幻觉为“有用的幻觉”需要仔细关注用户期望和知情同意。在纯粹的创意环境中,例如互动小说平台或推测性设计研讨会,这些幻觉很容易被情境化。在更模糊的空间中,共识性表演和操纵性误导信息之间的界限可能会变得模糊。设计师必须明显标记创意幻觉,以便用户了解规范的变化,不会将它们误认为事实输出。
此外,存在一种风险,即在某些情境中正常化幻觉可能会无意中削弱其他情境中的信任。一个可能的解决方案是分离AI操作的“模式”,创造性幻觉的想象模式和精确、可验证响应的事实模式。明确的免责声明、用户切换和界面设计可以帮助确保幻觉仍然是共识选择。
6 结论和未来方向
在PIP中,幻觉成为方法:一种从事实转向诗意发明的刻意偏离。借助Pip在《白鲸记》中的“疯狂”和其他文学和历史平行点,从艺术中的超现实主义到量子物理学的悖论,我们展示了如何通过战略性利用“幻觉”来通过打破刚性框架照亮隐藏的真理。无论是集成到混合现实模拟中、用作头脑风暴伙伴还是开发成创意写作助手,PIP都开辟了新前沿,在这些前沿中,AI生成的虚构不仅仅是容忍,而是拥抱。
正在进行的工作包括改进用户界面,让用户可以在幻觉和事实输出之间切换,以及进行更结构化的实验来衡量用户满意度、创造力和此类幻觉在AI中的社会影响。正如表演艺术依赖于共识性欺骗,AI也可以将幻觉视为“思想工具”,开拓故事讲述、互动艺术及更多领域的全新途径。
参考文献
[1] Emily M Bender 和 Alexander Koller. 2020. 攀登NLU之巅:关于意义、形式和理解的数据时代。在第58届计算语言学协会年会会议记录中。5185-5198。
[2] Margaret A Boden. 2009. 创造力的计算机模型。Ai Magazine 30, 3 (2009), 23-23。
[3] Peter Brook. 1996. 空间:关于戏剧的书:致命的、神圣的、粗糙的、即时的。第11卷。Simon and Schuster。
[4] Noël Carroll. 2003. 恐怖哲学:或者,心灵的悖论。Routledge。
[5] Noam Chomsky. 2014. 语法理论的各个方面。第11号。MIT出版社。
[6] Henri Focillon. 1942. 艺术中的形式生命 (C. Beecher Hogan 和 G. Kubler 翻译)。
[7] Erving Goffman. 2023. 日常生活中的自我呈现。在社会理论重述中。Routledge, 450-459。
[8] Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Ye Jin Bang, Andrea Madotto 和 Pascale Fung. 2023. 自然语言生成中的幻觉调查。Comput. Surveys 55, 12 (2023), 1-38。
[9] Gustav Kuhn. 2019. 体验不可能:魔法的科学。Mit Press。
[10] Peter Lamont 和 Richard Wiseman. 2005. 魔法理论:引入变戏法的理论和心理元素。Univ of Hertfordshire Press。
[11] Jaron Lanier. 2010. 你不是一个小玩意。Vintage。
[12] Joshua Maynez, Shashi Narayan, Bernd Bohnet 和 Ryan McDonald. 2020. 抽象概括中的忠实性和事实性。arXiv预印本 arXiv:2005.00661 (2020)。
[13] Herman Melville. 2018. 白鲸记。在医学与文学,第二卷中。CRC Press, 71-88。
[14] Jimmy Packham. 2017. Pip的海洋之声:《白鲸记》中的言语与大海。现代语言评论 112, 3 (2017), 567-584。
[15] Jean Piaget. 1970. 教育科学与儿童心理学。D. Coltman翻译。(1970)。
[16] Kris Pilcher. 2025. PiPOne合成数据集。https://huggingface.co/datasets/krispyATL/pip-one
[17] Abhilasha Ravichander, Shrusti Ghela, David Wadden 和 Yejin Choi. 2025. HALoGEN:奇妙的LLM幻觉及其发现之地。arXiv预印本 arXiv:2501.08292 (2025)。
[18] Konstantin Stanislavski 和 Jean Benedetti. 2009. 演员的角色工作。Routledge。
[19] Lev Semenovich Vygotsky. 2004. 儿童时期的想象力和创造力。俄罗斯与东欧心理学杂志 42, 1 (2004), 7-97。
[20] Ziwei Xu, Sanjay Jain 和 Mohan Kankanhalli. 2024. 幻觉不可避免:大型语言模型的固有限制。arXiv预印本 arXiv:2401.11817 (2024)。
[21] Rowan Zellers, Ari Holtzman, Hannah Rashkin, Yonatan Bisk, Ali Farhadi, Franziska Roesner 和 Yejin Choi. 2019. 抵御神经假新闻。神经信息处理系统进展 32 (2019)。
参考论文:https://arxiv.org/pdf/2504.12012