基于推理的初创企业评估人工智能(R.A.I.S.E.):一种增强记忆、多步骤决策框架

杰克·普雷文斯 ( 1 ) { }^{(\mathbf{1})} (1) 约瑟夫·特纳斯基 ( 2 ) { }^{(\mathbf{2})} (2) 福阿特·阿里坎 ( 2 ) { }^{(\mathbf{2})} (2) 伊吉特·伊尔哈穆尔 ( 2 ) { }^{(\mathbf{2})} (2)
( 1 ) { }^{(1)} (1) 牛津大学
( 2 ) { }^{(2)} (2) Vela Research

摘要

我们提出了一种新颖的框架,将决策树的可解释性与大型语言模型(LLMs)的高级推理能力相结合,用于预测初创企业的成功。我们的方法利用链式思维提示生成详细的推理日志,随后将其提炼为结构化、人类可理解的逻辑规则。该管道集成了多项增强功能——高效的数据摄取、两步精炼过程、集成候选采样、模拟强化学习评分和持久记忆——以确保稳定决策和透明输出。在精选的初创企业数据集上的实验评估表明,我们的综合管道相对于单独的OpenAI o3模型,精度提高了54%,从0.225提升到0.346,准确率提高了50%,从0.46提升到0.70。值得注意的是,我们的模型比随机分类器的精度高出超过2倍(16%)。通过结合最先进的AI推理与明确基于规则的解释,我们的方法不仅增强了传统决策过程,还促进了专家干预和持续政策改进。这项工作为在高风险投资环境中以及其他需要透明和数据驱动洞察的领域实施可解释的LLM驱动决策框架奠定了基础。

1. 引言

早期风险资本投资是一个高风险、高回报的领域,投资者必须在信息有限的情况下识别潜在的“独角兽”初创企业。传统的决策树提供了一些可解释性,但在处理非线性数据的复杂性方面表现不佳,而大型语言模型(LLMs)则以牺牲透明度为代价提供了强大的推理能力。我们的项目通过引入一种新的初创企业创始人评估框架来解决这些挑战,该框架结合了基于LLM的推理与结构化的基于规则的决策制定。这种集成方法不仅实现了高预测准确性,还为每个预测生成清晰、人类可理解的解释。

我们的主要目标是构建一个可解释的投资模型,其表现优于随机选择超过10倍,同时保持完全透明并可由专家编辑。与不透明的黑箱模型不同,我们的框架允许风险资本家使用他们的领域专业知识理解和必要时覆盖模型的决策。通过将LLM生成的推理日志转化为明确且可验证的规则,我们的系统使决策者能够审查、调整和回测底层政策,确保每个版本都能随着时间的推移得到改进。这种适应性应能增强利益相关者的信任,并启用一个持续反馈循环,最终导致更强大和有效的投资策略。

该框架建立在一个模块化和迭代设计的基础上,整合了若干先进技术。它包括多步精炼以提高LLM链式思维推理的质量,集成候选采样以减少预测中的变化性,基于模拟强化学习(RL)的评分以进一步优化输出质量,以及持久对话记忆以在多次交互中维持上下文。每个组件都独特地贡献于整体性能的提升,确保每次预测既可靠又可解释。

在这项研究中,我们展示了当引导LLM进行推理和解释其思维过程时,它们可以成为复杂决策领域的强大盟友。我们的代码实现框架,使用o3-mini模型,系统地生成自然语言推理日志,提取结构化规则,并将这些规则编译成一个可解释的初创企业成功预测决策政策。这项工作不仅克服了传统机器学习模型的僵化和不透明性,还为未来的研究和实际应用奠定了基础。

2. 文献综述

我们的工作建立在多条先前研究的线索之上。最近在LLM方面的进展为诸如风险资本(VC)等领域的预测分析开辟了新途径。然而,此类模型的不透明性质与高风险投资决策中对可解释性的需求相冲突。传统的预测早期公司成功的做法通常依赖于结构化数据和集成学习。虽然它们达到了良好的准确性,但缺乏可解释性。
(Xiong 和 Ihlamur, 2023) 提出了一种名为Founder-GPT的新方法,用来衡量创业概念与其创始人的独特背景之间的契合程度。该框架没有统一对待所有创业项目,而是整合了先进的LLM技术,包括自我模拟、迭代树基推理和后续评估,以捕捉创始人背景与创意之间的细微互动。初步实验表明,这种定制化分析提供了有价值的见解,表明通过个性化和基于创始人的视角评估初创企业可以显著提高对未来成功的预测。 (Xiong et al., 2024) 还通过GPTree解决了可解释性与性能之间的权衡问题,这是一种基于LLM的决策树框架。GPTree将决策树的可解释性与LLM的推理能力相结合,使用特定任务的提示来驱动树分裂。每个节点的决策标准由LLM生成,从而在每个分支上产生人类可读的规则。该框架还集成了专家参与机制,在初始训练后对树进行人工优化 (Xiong et al., 2024)。这种混合方法显著超越了少样本GPT-4和人类投资者在识别“独角兽”初创企业方面的表现,对于早期独角兽预测达到7.8%的精确度(相较于人类的3-5%),同时提供了透明的决策逻辑。

其他作品通过推理痕迹和自我修正来增强LLM的透明性和准确性。(Kashyap 和 Sinha, 2024) 使用了两阶段提示方法:LLM首先对输入进行逐步链式思维分析,然后根据该分析改进其初始答案。这种方法将模型的召回率从53%提高到75%(Kashyap 和 Sinha, 2024)。同样地(Muennighoff et al., 2025) 提出了一个测试时间缩放方法(“s1”),防止模型过早终止其推理。通过提示模型"等待"并扩展其链式思维,LLM可以复查并纠正错误,从而在复杂问题上获得高达27%的准确率提升(Muennighoff et al., 2025)。尽管这并非专门针对风险资本,但这样的显式推理步骤和迭代自我修正可以使投资预测更加可解释和可靠。

集成方法提供了另一条通向可靠性的路径。(Schoenegger et al., 2024) 展示了一个由12个LLM组成的集成模型(一个“硅人群”)可以媲美人脑判断:他们在31个预测任务上的聚合预测与925名人类预测者的群体一样准确,超越了单个模型和随机猜测。这些结果表明,集成多个推理代理可以获得强大的预测器,类似于群体智慧效应。(Crescas et al., 2024) 应用随机森林来将初创企业分类为成功或失败,取得了91%的召回率和比先前研究高出7%的准确率。然而,尽管集成方法通过聚合改善了性能,但其决策过程仍然难以解释,给需要透明理由的风险资本从业者带来了挑战。

另一个关键趋势是将LLM与结构化财务数据和集成方法融合。(Maarouf et al., 2025) 引入了一种“融合”LLM,将初创企业的文本档案与基本特征(如成立日期、行业)结合起来预测创业成功。这种混合模型大幅超越了仅基于文本的基线模型,取得了高于0.82的AUROC和更高的投资回报预测。发现文本自我描述的贡献很大,当添加到基本面时,预测准确率提高了约2.2个百分点。类似地,(Ozince 和 Ihlamur, 2024) 利用基于LLM的提示来为初创企业评估工程新特征。他们的框架使用链式思维提示从最小数据中分割创始人属性(如经验水平、个性),然后在预测模型中使用。这种方法揭示了可解释的创始人成功模式并提高了预测准确率,展示了LLM如何通过定性见解丰富传统风险数据。

在决策支持领域,Wang 开发了初创企业成功预测框架(SSFF),这是一种AI原生的风险投资分析师代理(Wang 和 Ihlamur, 2024)。SSFF 将经典机器学习模型与由LLM驱动的“分析师”模块和外部数据检索相结合,模仿风险投资家的尽职调查过程(Wang 和 Ihlamur, 2024)。该系统可以通过最少的信息(如公司名称或创始人简介)自主生成投资建议,这得益于其多步骤推理管道,该管道整合实时信息,甚至有一个专门用于创始人与创意匹配的模型。通过将任务分解为可解释的管道(预测块、分析块和知识块),SSFF 提供了一个比端到端黑箱预测器更透明的替代方案,同时匹配人类级别的分析质量。值得注意的是,这些混合和集成设计通过提供中间理由(如决策树分裂、合理提示或特征归因)解决了“黑箱”挑战,利益相关者可以检查这些理由。

总之,新兴的LLM驱动投资框架力求将预测能力和可解释性结合起来。所回顾的方法从不同角度应对这一挑战:GPTree 提供带有人工监督的透明规则;链式思维提示让模型解释并完善其推理;集成策略通过群体共识减少方差。虽然这些方法显示出希望,但也存在局限性。未来的工作可能结合这些技术(例如多个LLM交叉验证推理)并纳入领域特定知识以指导AI。

我们的框架整合了这些想法,生成了一个可解释的高精度模型,用于预测初创企业成功。

3. 方法论

我们的基础管道包含三个主要阶段,如图1所示。在以下章节中,我们将详细说明每个组成部分,并介绍额外的改进模块。
img-0.jpeg

图1. LLM驱动投资决策框架管道概述。

3.1. 创始人培训数据摄入与预处理

鉴于创始人档案的大小和异质性,高效的数据处理至关重要。我们采用分块阅读方法,使用加载和预处理函数。此函数执行以下任务:

  1. 以可管理的块读取CSV文件,以最小化内存开销。
    1. 将文本字段合并为统一的档案文本:
  • clean_linkedin_profile
    • clean_cb_profile
    • company_description
  1. 记录进度并将处理后的块汇总到单个DataFrame中。
    这种方法确保即使是非常大的数据集也能高效处理,而不牺牲数据质量。

3.2. 基于LLM的推理日志生成

我们系统的一个关键组件是为每位创始人生成详细的链式思维推理日志。我们首先通过用户输入的任务特定字符串作为LLM的上下文。通过将创始人的LinkedIn档案、Crunchbase摘要和公司描述合并为一个单一提示,系统清楚地定义了上下文。这使得LLM能够像一位专家初创企业分析师那样处理任务,利用其预训练知识生成富有洞察力的推理。

例如,如果我们的目标是区分成功的创始人,提示可能是这样的:
“你是一位专家初创企业分析师。根据创始人的背景和初创企业的描述,提供一个简洁、清晰、有结构的反思,解释创始人成功或失败的关键原因。”

提示指示LLM提供一个逐步的链式思维解释,说明为什么初创企业成功或失败。这种聚焦的指令帮助LLM优先考虑创始人背景和创业描述中最相关的细节,减少无关输出。

对于每位创始人,我们构造一个包含以下项目的提示:

  • 创始人档案:来自LinkedIn和Crunchbase的聚合文本。
    • 初创企业描述:关于创业的详细文本描述。
    • 结果信息:一个标签,表示初创企业是否成功或失败。
    • 任务指示:请求逐步解释影响结果的因素。
  • 此提示通过我们的客户端发送给OpenAI模型(o3-mini),并记录响应——即详细的推理跟踪——以及令牌使用情况。此步骤对于稍后将LLM的推理转换为逻辑规则至关重要。
    该函数遍历训练集中的所有创始人;LLM响应被解析以提取推理文本。任务特定的结构化提示确保类似的创始人档案产生一致的推理日志。这些输出的一致性至关重要,因为它是稍后可靠提取结构化逻辑规则的基础。对于每位创始人,我们还跟踪累计令牌使用量(用于成本估算),并在发生崩溃时定期将日志保存到CSV文件中。

以下是匿名化形式的LLM示例答案。

成功样本答案:

“John Smith 在麻省理工学院接受了一流的技术教育,并参加了Y Combinator和CFAR的项目,巩固了他的坚实技术基础。他在知名机构(如Google Brain和OpenAI开发GPT-3)担任的角色,使他深入了解前沿AI研究和工程实践。他的技术卓越性、创业履历和战略网络使他特别适合带领Anthropic在竞争激烈的AI领域取得成功。”

失败样本答案:

“Jane Doe 的背景深深扎根于医疗保健和生物技术研究,特别是在伤口护理、高压氧医学和医院销售方面。这段经历为她在患者护理和制药/医疗环境方面奠定了坚实的基础,而不是农业或工业生产。尽管她的MBA专注于可持续发展,但她的职业历史缺乏室内农业操作、农业科技工程或农商业方面的直接经验,这些都是开发和扩展新型隔热建筑用于作物生产的关键。”

3.3. 从推理日志中提取规则

为了保持LLM的方向,我们再次以任务特定字符串作为用户输入,作为LLM的上下文:
“将推理日志转换为有关创始人的单一简洁逻辑规则,仅使用指定格式。”

每个推理日志被处理以提取结构化的逻辑规则,形式如下:

IF <条件> THEN
可能性_成功 = <结果>
构建转换提示,包括示例规则和创始人的推理日志。此提示引导模型生成此类规则。

示例提示:将以下推理日志转换为结构化逻辑规则,解释为什么创始人成功或失败,使用以下格式:IF <条件> THEN 可能性_成功 = <结果>。

示例:
IF 创始人有一流大学背景 AND 曾在成功的初创企业工作 AND 创业理念针对快速增长的行业 THEN 可能性_成功 = 高。 OR
IF 创始人没有记录的专业经验 AND 没有之前的创业冒险 AND 缺乏相关行业知识 THEN 可能性_成功 = 低。

如果LLM输出不满意,则使用备用的基于正则表达式的回退方法,以确保规则准确反映实际结果。

将生成的规则及实际结果(存储在单独列中)保存到CSV文件中。

以下是基于之前展示的推理日志,从LLM中提取的规则示例。

成功样本规则:“IF 创始人就读一流院校(如MIT、哈佛)AND 在主要科技公司担任领导职位(如Stripe的CTO)AND 在科技社区内拥有广泛、高知名度的网络AND 积极参与科技和AI生态系统 THEN 可能性_成功 = 高。”

失败样本规则:“IF 创始人的背景主要集中在医疗保健和生物技术研究 AND 缺乏直接从事室内农业、农业科技工程和大规模建筑运营的经验,这些是超绝缘建筑概念所需的关键技能 THEN 可能性_成功 = 低。”

3.4. 决策政策生成

一旦初步规则被编译成初步决策政策,规则将分为两组:成功和失败。然后分别向LLM发送两个独立的提示(每组一个)以生成每组的简洁决策政策。生成的政策随后被组合成一份统一的政策文档。
我们提供以下特定任务上下文:分析以下从成功/失败创始人档案中提取的规则,并编制一份简洁的决策政策,清楚总结预测创业成功/失败的关键条件。
规则:
您的输出应采用以下格式:
IF <条件> THEN
可能性_成功 = 高/低。

3.5. 初创企业成功预测

然后使用决策政策对测试集生成预测。对于每位创始人,预测函数构建一个包含创始人档案和决策政策的提示。查询LLM返回预测(高或低)及其解释。最终预测及其解释被追加到DataFrame中。

为了保持专注,我们再次使用特定任务上下文:
“根据提供的创始人档案和决策政策,预测成功可能性(高或低),并简要说明您的推理理由。”
示例提示如下构建:
创始人档案:[clean_linkedin_profile]
| [clean_cb_profile]
初创企业描述:
[company_description]
根据以下决策政策,预测创始人是否可能成功。
决策政策:<policy_text>
请以以下格式返回您的预测:
预测:<高或低>
解释:<简短解释>

3.6. 评估与指标

框架的预测与实际结果使用标准评估指标进行比较:

  • 精确度:精确度是正确预测的正观察值与总预测正观察值之比。当误报成本较高时,这一点尤其有用。
     Precision  = T P T P + F P \text { Precision }=\frac{T P}{T P+F P}  Precision =TP+FPTP

  • 召回率(灵敏度):召回率是正确预测的正观察值与所有实际正例之比。当漏掉正实例(假阴性)成本很高时,这一点至关重要。
     Recall  = T P T P + F N \text { Recall }=\frac{T P}{T P+F N}  Recall =TP+FNTP

  • F1 分数:F1分数是精确度和召回率的调和平均值。它提供了一个平衡精确度和召回率的单一衡量标准。
     F1 Score  = 2 ×  Precision  ×  Recall   Precision  +  Recall  \text { F1 Score }=2 \times \frac{\text { Precision } \times \text { Recall }}{\text { Precision }+ \text { Recall }}  F1 Score =2× Precision + Recall  Precision × Recall 

  • Matthews 相关系数(MCC):MCC 是一个平衡的衡量标准,考虑了真阳性和假阳性及假阴性。即使类别大小差异很大,它也被认为是平衡的。
    M C C = T P × T N − F P × F N ( T P + F P ) ( T P + F N ) ( T N + F P ) ( T N + F N ) \mathrm{MCC}=\frac{T P \times T N-F P \times F N}{\sqrt{(T P+F P)(T P+F N)(T N+F P)(T N+F N)}} MCC=(TP+FP)(TP+FN)(TN+FP)(TN+FN) TP×TNFP×FN

  • 准确率:准确率衡量在所有测试样本中正确分类样本的比例。
     Accuracy  = T P + T N T P + T N + F P + F N \text { Accuracy }=\frac{T P+T N}{T P+T N+F P+F N}  Accuracy =TP+TN+FP+FNTP+TN

评估结果、详细的预测日志和RL得分被保存到CSV文件中。

4. 结果

我们在一个平衡的数据集上评估了我们的初创企业预测框架——100个成功案例和100个失败案例用于训练,固定测试集为10个成功案例和50个失败案例——以确保在不同模型增强之间的公平比较。我们评估了一系列逐步增强我们初创企业预测管道的实验。我们的方法从比较旧的OpenAI 40-mini模型和当前的o3-mini模型开始,随后进行了包括两步推理过程、集成候选采样(3次选择)、模拟RL评分和持久对话记忆的改进。每种变体都使用标准指标——精确度、召回率、F1分数、MCC和总体准确率——以及混淆矩阵来说明模型的预测分布进行评估。

4.1. 40 vs 03

在最初的实验中,我们将旧的OpenAI 40-mini模型与我们目前的选择o3-mini模型进行了性能对比。40-mini模型提供了可接受的链式思维响应;然而,其输出通常更为冗长,并包含冗余或离题的信息。相比之下,o3-mini模型在每位创始人的档案和创业描述的关键要素上表现出更强的聚焦能力。这导致了更简洁和连贯的推理日志,进而使后续的规则提取过程更为可靠。我们的实验显示,o3-mini模型不仅提高了令牌效率——从而降低了API成本——还产生了更具可解释性的输出。这些改进对框架至关重要,因为推理日志的清晰度直接关联到后续提取的结构化规则的质量。

指标40 模型o3-mini 模型
精确度0.2000.225
召回率0.9000.900
F1 分数0.3270.368
MCC0.1550.221
准确率0.3830.467

表1. 性能对比:40 vs. o3-mini
为了提供更多的见解,我们还比较了40-mini和o3-mini模型的混淆矩阵。表2和表3展示了每个模型在测试集上的预测分布,其中包含60位创始人(10个实际成功案例和50个实际失败案例)。请注意,确切的混淆矩阵数字有时可能是近似值或与报告的全局指标略有不同(例如,由于舍入或因为LLM在每次运行中可能会产生略有不同的推理和规则)。

预测
失败成功
实际失败1436
实际成功19

表2. 40 模型的混淆矩阵

预测
失败成功
实际失败1931
实际成功19

表3. o3-mini 模型的混淆矩阵
从这些矩阵中,我们可以看到o3-mini模型比40-mini模型正确识别了更多负面案例(实际失败),并且在实际失败上保持了较低的假阳性数量。这在定性上与表1中报告的更高准确率和MCC分数相符。

4.2. o3 vs 两步精炼

在这个管道(如图2所示)中,o3-mini模型被应用于两步精炼过程。第一步涉及为每位创始人生成原始的链式思维推理日志,而第二步则对该输出进行精炼,以验证和澄清关键决策信号。这种两步方法确保只保留最相关和最准确的细节用于规则提取。与单独使用o3-mini相比,两步精炼显著提高了提取规则的一致性,并减少了推理日志中的噪声。通过反复检查哪些内容是正确的,我们确保只保留最稳健和最相关的条件,最终生成更精确的逻辑规则,更好地捕捉创始人成功的基本因素。
img-1.jpeg

图2. 两步推理过程概述。
该方法的示例提示如下:
你是一位严格的初创企业成功预测评估员。
你的任务是审查初始预测及其推理,并提供一个与数据和决策政策逻辑一致的最终、精炼预测。

AI最初预测:{初始预测},理由如下:{初始推理}
双重检查推理是否遵循决策政策和所有提供的数据。
如果有任何错误或遗漏,请纠正它们。
最后,以’HIGH’或’LOW’的形式输出最终正确结果,并简要说明你的修正。

指标 03 \mathbf{0 3} 03 (单次传递) 03 \mathbf{0 3} 03 (两步法)
精确度0.2250.237
召回率0.9000.900
F1 分数0.3680.375
MCC0.2210.247
准确率0.4670.500

表4. 性能对比:单次传递o3-mini vs. 两步精炼

预测
失败成功
实际失败2129
实际成功19

表5. o3-mini模型两步精炼的混淆矩阵

表4比较了使用单次传递方法和两步精炼过程的o3-mini模型的关键性能指标。值得注意的是,两步精炼在多个指标上有所改进。例如,精确度从0.225提高到0.237,F1分数从0.368上升到0.375。MCC也从0.221提高到0.247,总体准确率从46.7%增加到50.0%。尽管这些改进较小,但在即使是增量收益也能影响决策可靠性的情况下,它们具有重要意义。

这种分布产生了0.900的成功案例高召回率,确保模型捕获大多数真正例。然而,由于失败类中有大量假阳性,精确度相对较低(约为0.237)。

总体而言,数据显示两步精炼过程通过提供更可靠和可解释的预测增强了模型的性能。不过,仍需进一步努力以减少假阳性率并实现更均衡的分类性能。

4.3. o3 vs 模拟强化学习(RL)

在另一组实验中,我们引入了模拟强化学习(RL)组件作为o3-mini模型推理质量的二级批评者。我们的框架包含了一个模拟RL评分机制,以定量评估模型的链式思维推理质量。这个模拟RL步骤通过奖励连贯和精确的推理同时惩罚模糊或逻辑不一致的输出,引入了额外的质量控制层。具体来说,系统提示o3-mini模型为每个候选者的推理分配0到1之间的分数,其中1表示完美精确(即无假阳性),0表示完全错误的推理。这个基础分数然后根据预测的实际结果进行调整:当实际结果和预测均为正(真阳性)时,增加+0.2的奖励;如果实际结果为负而预测为正(假阳性)时,施加-0.2的惩罚;类似地,假阴性受到-0.1的惩罚,而真阴性获得+0.05的小奖励。这些分数已被调整,使LLM不会对假阳性反应过于激烈。

该分数与规则相关联,并反馈到细化政策函数中;该函数读取提取的规则和测试预测。它将提取的规则汇总成摘要并计算性能数据(平均RL分数、总体准确率和样本预测)。然后构建一个包含当前决策政策、规则摘要和测试结果的长文本提示。此提示发送给模型,并附带指示以细化决策政策,重点强调精确度(最小化假阳性)。返回细化后的政策文本。这种机制不仅鼓励连贯和逻辑合理的解释,还为细化整体决策政策提供了有价值信号,最终导致预测准确性和可解释性的提高。

以下是一个示例提示:
你是一位专家初创企业成功决策政策评估员。
细化以下决策政策以预测初创企业{类别}结果,改进细节,重点提高精确度(最小化假阳性)。
整合以下提取规则中的所有关键信号,避免与数据矛盾。
结合我们基于RL的评分机制的见解:确保细化后的政策强调高质量推理的重要性
通过奖励真阳性并惩罚假阳性来获得高RL分数。
使用此评分反馈来增强最终决策政策的稳健性和可解释性。

与单独使用o3-mini相比,结合模拟RL评分导致了整体决策质量和提取规则可解释性的可测量改进。

指标 03 \mathbf{0 3} 03 (无RL) 03 \mathbf{0 3} 03 (模拟RL)
精确度0.2250.243
召回率0.9000.900
F1 分数0.3680.383
MCC0.2210.261
准确率0.4670.517

表6. 性能对比:o3-mini无模拟RL评分 vs. 有模拟RL评分

预测
失败成功
实际失败1733
实际成功19

表7. o3-mini模型应用RL前的混淆矩阵
表6呈现的数据和伴随的混淆矩阵表明,将模拟RL评分整合到o3-mini模型中会导致可测量的性能改进。

预测
失败成功
实际失败2228
实际成功19

表8. o3-mini模型应用RL后的混淆矩阵
在应用RL后,精确度从0.225提高到0.243,总体准确率从46.7%提高到51.7%,而召回率保持在0.900不变。这些改进也反映在F1分数和MCC上,分别从0.368提高到0.383,从0.221提高到0.261。混淆矩阵显示了一个显著的变化:应用RL前,模型对实际失败案例预测了17个失败和33个成功,而应用RL后,它正确分类了更多失败案例(22个)和更少成功案例(28个),表明对两类的区分能力增强。初始测试的平均RL分数为0.042,表明RL评价过程中仍有进一步优化的空间。

这种模拟RL机制有助于强调连贯和逻辑合理的推理,同时惩罚模糊或过于泛化的解释。引入模拟RL导致整体决策质量显著提高,细化后的分数与预测准确率的提高密切相关。这种方法证明了即使没有完整的RL训练循环,结合RL风格的评价也可以显著提高模型性能。
img-2.jpeg

图3. 概述用于改进模型推理质量的模拟强化学习模块
最终RL分数通过结合基础分数和调整得出,作为推理质量的稳健定量衡量标准。

4.4. o3 vs 3选

我们通过采用集成候选采样策略进一步增强了预测机制。对于每位创始人,o3-mini模型独立提示三次以生成候选预测及其解释。通过对这三次候选预测进行简单的多数投票,从而提供多种视角。

理由是个别预测可能因模型输出的随机变化而有所不同,这种策略利用模型输出的自然变化达成共识决策。通过平均三次预测,我们减少了偶然错误或异常响应的可能性。我们的实验表明,这种方法比依赖o3-mini的单次预测增加了最终预测的稳定性和可靠性,从而提高了测试集上的精确度和一致性。

指标 03 \mathbf{0 3} 03 (单次预测) 03 \mathbf{0 3} 03 (3选)
精确度0.2250.265
召回率0.9000.900
F1 分数0.3600.409
MCC0.2210.301
准确率0.4670.567

表9. 性能对比:o3-mini单次预测 vs. 3选集成

预测
失败成功
实际失败2525
实际成功19

表10. o3-mini模型集成的混淆矩阵
表9中的性能指标表明,采用o3-mini模型的集成方法较单次预测策略有显著改进。具体来说,精确度从0.225提高到0.265,F1分数和MCC分别从0.360提高到0.409和从0.221提高到0.301。这一改进也反映在总体准确率上,从46.7%提高到56.7%。值得注意的是,召回率保持在0.900不变,表明模型识别真正例的能力得以保留。表10中的混淆矩阵进一步突显了这些改进:对于实际失败案例,模型对失败和成功的预测数量相等,而对于实际成功案例,
img-3.jpeg

图4. 集成候选采样过程概述
集成方法正确识别了更大比例的实际成功案例。总的来说,这些结果表明,通过多数投票聚合多次预测不仅减少了随机误差,还增强了模型在分类初创企业结果方面的稳定性和可靠性。

4.5. o3 vs 内存

持久对话记忆在我们的管道中扮演了重要角色,允许系统跨多次交互保留和利用上下文。通过将LangChain开发的基于摘要的记忆模块与o3-mini集成,我们的方法捕捉了先前对话中的关键细节,减少了冗余信息和令牌开销。这不仅增强了链式思维解释的一致性,还防止模型重复自己,确保每次响应都能自然地基于对话历史展开。

我们的方法利用动态摘要技术,持续将先前对话压缩成简洁的摘要,捕捉过去互动中的关键细节,同时过滤掉不必要的信息。这一过程确保模型专注于最相关的上下文,使其能够有效地基于早期的推理步骤展开。记忆模块无缝支持整个过程,从生成详细的推理日志到做出明智的预测,从而优化系统的整体性能和精确度。通过这种方式更新和细化对话历史,系统更能生成精确且基于上下文的预测。使用的记忆管道如图6所示。这种记忆在从推理日志生成到预测的所有步骤中均可访问,如图5所示。

实验结果显示,结合持久记忆的模型生成了更集中和简洁的推理日志,相比没有记忆的模型,提供了更高质量的预测。将记忆融入过程通过确保早期互动中的关键见解影响后期决策,提升了决策政策的准确性和清晰度。通过将这些细化的摘要反馈到模型中,我们的框架确保所有来自早期互动的关键信号都被纳入后续决策之中。
将持久记忆纳入的重要后果是产生了更强有力的决策规则。这里的“更强有力”指的是更连贯、更稳定且更能反映从先前互动中提炼出的关键信号的一套规则。增强的清晰度和聚焦上下文有助于确保这些规则捕捉影响决策的最重要因素,从而提高其预测价值。这种系统性的改进使规则集成为一个更可靠和可解释的基础,用于持续的政策演变。

指标 03 \mathbf{0 3} 03 (无记忆) 03 \mathbf{0 3} 03 (有记忆)
精确度0.2250.321
召回率0.9000.900
F1 分数0.3680.474
MCC0.2210.388
准确率0.4670.667

表11. 性能对比:o3-mini无持久记忆 vs. 有持久记忆

将持久记忆整合到o3-mini模型中显著提高了性能,如表11所示。具体来说,精确度从0.225提高到0.321,这反过来提升了F1分数从0.368到0.474,MCC从0.221到0.388。表12中呈现的混淆矩阵进一步支持
img-4.jpeg

图5. 持久记忆整合概述,展示动态摘要如何在多次互动中维持上下文。
img-5.jpeg

图6. 概述记忆模块,通过保留关键见解支持整个决策过程。

预测
失败成功
实际失败3119
实际成功19

表12. o3-mini模型有持久记忆的混淆矩阵
这些发现:对于50个实际失败案例,31个被正确识别为失败,而19个被错误分类为成功;在10个实际成功案例中,9个被正确预测,只有1个被错误分类为失败。因此,总体准确率从46.7%上升到66.7%的高分,而召回率保持在0.900不变。这表明加入持久记忆显著减少了假阳性,从而增强了模型的整体预测可靠性。

这些结果表明,持久记忆使模型能够在多次互动中保留关键上下文,从而实现更精确和可解释的决策。

4.6. o3 vs 综合

最后,我们介绍了端到端预测初创企业成功的管道,该管道结合了几种先进技术:多步精炼、集成候选采样、模拟RL评分和持久记忆。通过结合这些方法,我们的方法利用每个组件的独特优势来提高预测的准确性和可解释性。综合方法利用了上述所有改进。我们的结果显示,完全集成的管道在所有单独组件中表现最佳。我们的方法不仅基于传统的LLM输出,还将其细化为更易被人类理解的决策政策。它实现了最高的精确度和最可解释的决策政策。

图7提供了综合管道的概述,而表13展示了与基准o3-mini模型相比的性能指标总结。表14显示了相应的混淆矩阵。

表14中的混淆矩阵进一步强化了这些改进,通过展示正确预测的成功案例显著增加来证明。除了简单提高整体准确率外,我们的分析表明,综合管道显著减少了相对于基准o3-mini模型的假阳性数量;集成方法提供了对成功和失败案例更强的区分能力,从而增加了其推荐的可信度,因为高估初创企业的潜力可能导致巨大的财务风险。

指标o3-mini 基准综合管道
精确度0.2250.346
召回率0.9000.900
F1 分数0.3680.500
MCC0.2210.421
准确率0.4670.700

表13. 性能对比:o3-mini 基准 vs. 完全综合管道

预测
失败成功
实际成功3317
实际失败19

表14. 综合o3-mini模型的混淆矩阵
结果清楚地展示了我们集成方法的优势。完全综合的管道实现了0.346的精确度、0.500的F1分数和0.421的MCC,总体准确率从46.7%提高到70.0%。这些改进表明,多步精炼、集成候选采样、基于RL的评分和持久记忆的有效结合减少了假阳性并提高了预测的可靠性。模块之间的协同作用创建了一个反馈循环,一个组件的优势弥补了另一个组件的弱点。多个评估指标的一致性不仅反映了统计性能的提升,还反映了更加连贯的解释结构。最后,集成管道动态调整和细化决策边界的能力进一步巩固了其优于单一方法的优势。

此外,混淆矩阵确认我们的整体框架更擅长区分成功和失败案例。特别是,成功创业公司的正确识别有了显著增加。这些发现表明,我们的方法不仅产生了更准确的预测,还生成了更容易让专家理解和信任的决策政策。总体而言,这些先进技术的整合创建了一个可解释的系统,为改进初创企业成功预测带来了巨大希望。

5. 讨论与未来工作

我们提出的框架引入了一种新颖且可解释的方法来评估初创企业创始人,将基于LLM的推理与结构化的基于规则的决策制定相结合。与传统机器学习模型不同,后者通常作为不透明的预测器运作,我们的方法确保每个预测都可以追溯到明确且人类可理解的推理。系统为每个预测生成清晰的自然语言解释,使决策者能够将结果追溯到特定的人类可理解规则。每位被分类为“成功”的创始人都伴随着一个自然语言解释或规则(例如,“创始人有先前退出经历和近期融资成功”)以证明该决定。其模块化设计包括多步精炼、集成候选采样、基于模拟RL的评分和持久记忆,能够在保持透明度的同时实现稳定的性能。这种全面的方法不仅自动化了复杂的评估过程,还促进了专家干预,允许领域专家审查和细化提炼出的政策,以更好地捕捉行业洞察。

尽管我们的框架在预测准确性和可解释性方面显示出有希望的改进,但仍有一些机会可以进一步增强。未来的工作应探索更深入的推理验证,纳入更多动态的人工参与细化,并在更广泛的领域进行测试。例如,增加候选预测的数量(样本)可能会提高性能,但这也提出了一个问题,即比较和保留仅表现最佳的样本或前N个选择是否能进一步完善结果。此外,将提取的规则转换回自然语言(例如,将其整合为“投资论点”)可以提高最终用户的可用性,通过提供连贯且全面的决策政策解释来呈现。这些进展,包括开发二级验证机制和自适应政策记录,对于确保模型在面对分布外数据和不断变化的市场条件时保持稳定至关重要。

我们框架的关键优势包括其模块化和迭代设计,这使得以下几点成为可能:

  • 多样化的推理视角:通过采样多个链式思维输出并使用记忆积累见解,单个LLM有效地模拟了一个具有不同观点的评委小组。这种“一人众”方法受到LLM集成中群体智慧效应的启发,比单次通过得出更准确的决策。

    • 通过反馈自我优化:我们展示了一个过程,其中LLM可以通过性能反馈来细化自己的决策政策,无需额外的训练数据。在这个过程中,模型本质上“从”即时错误中学习:观察哪些预测不够准确,相应地调整其内部逻辑,从而改进其链式思维推理。这种动态调整是一种形式的“情境内”学习和政策自我改进,模仿测试时间优化,在推理过程中模型持续微调其行为以实现更高的精确度。
    • 灵活的提示和领域适应:我们的框架本质上是可适应的,允许有针对性的提示来纳入领域特定数据和专家见解。这种灵活性确保系统能够随着市场条件的变化而演变,并根据不同行业的独特挑战定制其决策政策。
      尽管有这些优势,仍有一些领域值得进一步研究:
  • 纳入人工编辑的政策:虽然我们的LLM自主细化了规则集,但加入人工参与的方法可以进一步改进。未来的研究应探讨直接由领域专家调整规则对性能的影响,以及此类策划的政策是否能更好地泛化或避免某些偏差。
    这确保了解释不仅在理论上合理,还能在实际环境中转化为更好的、更明智的投资结果。让风险资本家和投资分析师参与受控实验和现实生活试点计划,可以为AI生成见解的清晰度、实用性和可靠性提供有价值的反馈,使研究人员能够根据实际需求微调系统的推理和表达方法。此外,这种评估可以揭示模型的透明决策过程是否帮助专家识别以前被忽视的风险或机遇。

  • 成本和令牌使用:使用附加模块的一个缺点是我们更频繁地调用模型,从而大幅增加令牌使用和成本——两步法为 2 × 2 \times 2×,集成法为 3 × 3 \times 3×,综合模型为 8 × 8 \times 8×。由于结合方法相对于单独使用记忆的改进较小,专注于仅使用记忆的方法在未来工作中可能非常有益。减少API调用将是首选。

    • 提升推理深度和验证:我们的框架已经使用链式思维提示来鼓励多步骤推理,但在困难案例上仍有很大空间深化模型的逻辑参与。一种有前途的技术是预算强制,通过在每次中间响应末尾附加自我质询提示(如“等等?我是不是犯错了?”)来对抗推理过早终止。这阻止模型将其答案视为最终结果,而是促使它继续反思。后续用户消息指示模型“从你停止的地方继续思考,如果有任何错误,请纠正。最多思考8096个令牌”,引导模型通过迭代细化周期。经过几个这样的步骤后,过程以指示提供简洁的最终答案(如“回答控制在2048个令牌以内!!!”)结束。这种结构化的循环促使模型重新审视并改进其先前的推理,通常导致更清晰的逻辑和更低的错误率。通过模拟更深层次的批判性思维,预算强制不仅提升了准确性,还增强了解释的连贯性——特别是在推理质量通常较差的边缘案例中。不过,过度使用可能会引入不必要的冗长或新错误,因此根据难度动态调整迭代次数仍然是未来探索的重要领域。
  • 跨领域稳定性评估:我们专注于初创企业创始人的成功,但该方法可以应用于其他需要可解释决策的领域(招聘决策、拨款选择等)。测试这种方法在其他上下文中是否产生类似的收益,或者是否需要特定领域的调整,将是有价值的。此外,还需要进行稳定性测试(例如,模型如何处理分布外的创始人档案或恶意构建的档案),以确保可靠性。

    • 自适应政策记录:为了最大化现实世界的可用性,最终的决策规则集可以编译成正式的政策文件供风投公司使用。我们的目标是自动化生产这样的文档,其中每条规则都附带理由和统计数据(例如,“规则1在测试中正确识别了80%的成功创始人且没有假阳性”)。这样的文档将作为透明且可编辑的投资框架。随着新数据的接收,系统可以定期更新此政策,使其成为一个随着市场演变而演进的活文档。
    • 规则作为代码:可能的扩展是将规则输出为可执行代码——类似于CodeAct或其他类似方法。这将允许通过编译器或解释器立即验证规则,从而可以针对真实创始人数据测试规则。这种工作流程不仅确保逻辑和语法上的正确性,还简化了将验证过的、可执行逻辑集成到生产管道中的过程,其中验证过的、可执行逻辑是必不可少的。
    • 改进的幻觉检测:通过将幻觉检测库集成到我们的工作流程中,可以监控和评估LLM输出是否存在潜在幻觉。该系统将提供二进制分数,指示响应为幻觉的可能性,从而为预测添加额外的可靠性和可信度层。
    • LLM的微调:我们在o3-mini模型上进行了初步微调,以更好地适应初创企业评估领域。然而,通过使用更大、更特定于领域的数据集和迭代校准进行更有针对性的微调,还有很大的改进空间。增强模型生成连贯和精确解释的能力可以进一步提高预测准确性和提取决策规则的质量。
      通过完善这些组件,我们可以进一步增强基于LLM和可解释的投资模型。我们的工作弥合了LLM预测能力和决策者对可理解且可控模型的实际需求之间的差距,我们看到了将这一范式扩展到支持其他高风险、不确定环境中的人类决策者的有希望的途径。

6. 结论

我们提出了一种混合的LLM驱动推理系统,能够实现可解释的投资决策。我们的方法通过从LLM的链式思维中提取可解释的启发式规则,表现出强大的预测能力,比纯粹随机或基准模型具有显著更高的精确度。重要的是,每个预测都伴有清晰的文本解释,决策政策以可编辑的规则列表形式表达。这个框架在实际世界VC工作流中展现出应用前景,它可以通过提供即时可理解的数据驱动见解来增强人类投资者的能力。总之,我们的结果突显了大型语言模型在复杂决策领域中的强大盟友地位,它们在指导推理和阐述推理时,能够结合AI的灵活性与基于规则系统的透明性。

我们在精选的初创企业数据集上的实验评估表明,我们框架的每个组成部分都为更稳定和可靠的决策过程做出了贡献。持久记忆和集成方法的结合显著减少了假阳性。两步精炼和基于RL的评分进一步提高了推理日志的质量。与基准模型相比,综合管道在精确度、F1分数和整体准确率方面取得了显著进步,强调了我们框架在高风险投资环境中的潜力。

尽管取得了这些令人鼓舞的结果,我们的框架也面临一些挑战。与多步和集成方法相关的令牌使用和计算成本的增加突显了进一步优化的必要性,尤其是在将模型扩展到更大的数据集或实时应用时。此外,虽然我们的系统增强了透明度,但确保生成的解释准确且无幻觉仍然是持续的研究重点。

未来的工作应探索更高效的内存管理策略、在特定领域数据集上的高级微调以及针对幻觉检测的技术,以进一步完善决策政策。将框架扩展到其他领域,如医疗保健、金融或招聘,可能会为复杂决策场景中的可解释AI开辟新的机会。最终,我们的研究为将人类专业知识与AI驱动的见解结合起来的工作做出了贡献,为更透明和有效的投资决策框架奠定了基础。

参考文献

Cole Crescas, James Cook, Aldo Pioline 和 Antony Charles. 分析早期风险资本投资以挑选“获胜”公司,2024年。未发表的项目报告。

Yuktesh Kashyap 和 Amrit Sinha. LLM 是您所需的一切:LLM 在使用历史数据进行预测和分类时的表现如何。Int. J. Multidiscip. Res., 6(3), 2024. DOI: 10.36948/ijfmr.2024.v06i03.23438.

Abdurahman Maarouf, Stefan Feuerriegel 和 Nicolas Prollochs. 融合大型语言模型预测初创企业成功的模型。European Journal of Operational Research, 322: 198-214, 2025.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Fei-Fei Li, Hannaneh Hajishirzi, Luke Zettlemoyer, Percy Liang, Emmanuel Cand‘es 和 Tatsunori Hashimoto. s1: 简单测试时间缩放。arXiv preprint arXiv:2501.19393, 2025.

Ekin Ozince 和 Yigit Ihlamur. 自动化风险投资:使用LLM驱动的分段、特征工程和自动标记技术进行创始人评估。arXiv preprint arXiv:2407.04885, 2024.

Philipp Schoenegger, Indr=e Tuminauskaite, PeterS. Park, RafaelV.S. Bastos 和 PhilipE. Tetlock. 硅群的智慧:LLM集成预测能力与人类群体准确性相当。Science Advances, 10(45): eadp1528, 2024. doi: 10.1126/sciadv.adp1528.

Xisen Wang 和 Yigit Ihlamur. 自动化初创企业评估管道:初创企业成功预测框架 (SSFF)。arXiv preprint arXiv:2405.19456, 2024.

Sichao Xiong 和 Yigit Ihlamur. Founder-gpt: 自我博弈评估创始人与创意契合度,2023。URL https://arxiv.org/abs/2312.12037.

Sichao Xiong, Yigit Ihlamur, Fuat Alican 和 Aaron Ontoyin Yin. GPTree: 通过LLM驱动的决策树实现可解释决策。arXiv preprint arXiv:2411.08257, 2024.

影响声明

我们的框架利用大型语言模型的高级推理能力提供可解释和可行的投资预测,满足了风险资本领域的一项关键需求。通过将LLM生成的推理日志转化为明确且可验证的决策规则,系统赋予投资者理解和改进决策过程的能力。这种透明度不仅建立了对AI驱动建议的信任,还促进了专家干预,最终通过澄清投资决策、新兴投资规则和投资理论来减少投资风险和不确定性。

超越风险资本,这种方法在其他高风险领域如医疗保健和金融中也有潜力革新决策,因为在这些领域可解释的AI对于知情、负责任和可靠的成果至关重要。

附录

A. 4o-mini 推理日志、提取规则和最终决策政策

本附录展示了使用GPT 40评估成功和失败创始人案例的匿名化推理日志,以及提取的决策规则和最终决策政策。

A.1. 匿名推理日志

A.1.1. 成功案例

创始人A - 成功

创始人成功的关键原因:创始人A

  1. 广泛的行业和运营经验:创始人A拥有超过20年的技术、产品开发、管理和战略方面的经验。之前担任过一家大公司(以3.6亿美元被收购)的CEO和领先科技公司的高级职位,提供了深入的运营最佳实践和技术创新见解。
    1. 已验证的履历:前一家公司的成功收购验证了创始人A建立和扩展技术驱动型企业的能力,增强了他们在投资者和战略合作伙伴中的信誉。
    1. 强大的技术和商业双重专长:持有软件工程和商业双学位,创始人A有效结合了技术创新和稳健的商业策略,这对于利用技术颠覆传统市场的初创企业来说是一个关键组合。
    1. 战略愿景:在企业发展和并购方面的经验使创始人A具备了扩展初创企业并抓住市场机会所需的前瞻性战略眼光。
    1. 关注技术和创新:这家初创企业利用尖端技术优化流程并推动创新,确保在市场上具有竞争优势。
    1. 敏捷和适应性:运营框架强调快速决策和对市场动态的响应。
    1. 坚实的专业网络:广泛的专业联系为创始人A提供了导师指导、战略合作伙伴关系和关键资金渠道。

结论:

创始人A的成功主要归因于其广泛的行业经验、已验证的履历、平衡的技术和商业专长以及强大的专业网络。

创始人B - 成功

创始人成功的关键原因:创始人B

  1. 深厚的金融服务专长:创始人B长期从事金融服务行业,对其市场动态、监管挑战和客户需求有着深刻的理解。
    1. 卓越的沟通和投资者关系技能:在专注于沟通和投资者关系的高管角色中,他们能够有效阐述初创企业的价值主张。
    1. 战略性网络:凭借强大的专业网络,创始人B成功建立了战略合作伙伴关系并赢得了投资者的信任。
    1. 创新的产品供应:这家初创企业提供了一个用户友好、全面的数字资产管理解决方案,满足了不断增长的市场需求。
    1. 明确的领导力和愿景:创始人B通过明确的战略愿景将团队和利益相关者的目标对齐,这是早期市场成功的关键因素。
    1. 市场时机和地区匹配:适时进入市场,加上在动态金融中心的地理匹配,进一步推动了初创企业的增长。
    1. 注重信任和安全:强调交易中的安全性,增强了客户和机构的信心。

结论:

创始人B的成功归因于深厚的金融专长、明确的领导力、战略性网络和恰到好处的市场进入。

A.1.2. 失败案例

创始人C - 失败

失败的关键原因:创始人C

  1. 产品(市场和技术不匹配):这家初创企业的旗舰产品旨在增强特定程序,但由于未能明显优于现有解决方案,导致市场差异化差。
    1. 监管和运营挑战:难以实现临床验证、获得监管批准和优化运营阻碍了成功进入市场。
    1. 资金限制:资金不足限制了这家初创企业扩展产品开发和优化上市策略的能力。
    1. 领导和团队动态问题:无效的团队凝聚力和领导力导致了战略举措的次优执行。
    1. 不足的营销策略:糟糕的市场定位和沟通限制了目标客户的产品采用。

结论:

创始人C的失败主要是由于缺乏明确的产品市场适配、监管和运营障碍、资金限制以及领导力挑战。

A.1.3. 失败案例

创始人D - 失败

失败的关键原因:创始人D

  1. 缺乏专业经验:创始人缺乏记录在案的专业背景或之前的创业经历,影响了可信度。
    1. 不足的领域专长:对目标市场的有限理解导致产品未能符合消费者期望。
    1. 有限的网络和资源获取:缺乏强大的专业网络显著阻碍了获取资金和战略指导的机会。
    1. 不充分的产品验证和适应:未能通过试点测试验证产品概念,导致策略和执行上的失误。

结论:

这些失败案例强调了实现初创企业成功所需的深厚领域专长、实践经验、强大网络和有效的产 品验证。

A.2. 提取的决策规则

以下是自动从GPT 40推理日志中提取的规则。

A.2.1. 成功规则

- 创始人A的规则:

如果创始人拥有广泛行业经验和运营经验(包括领导角色和成功的创业退出)、技术与商业双重专长、经验证的战略领导力和清晰的市场颠覆愿景,以及强大的专业网络以提升可信度,则成功可能性 = 高。

- 创始人B的规则:

如果创始人在金融服务领域有广泛背景、展现了强大的沟通和投资者关系技能、拥有战略性专业网络并在区域市场有强烈匹配,则成功可能性 = 高。

A.2.2. 失败规则

- 创始人C的规则:

如果创始人拥有强大的企业行业背景,但未能展示出敏捷的创业执行技能,以快速验证产品效益、导航监管障碍和推动市场采纳,则成功可能性 = 低。

- 额外失败反思规则:

如果创始人没有记录在案的专业经验、缺乏相关领域的专长、拥有有限的专业网络并且未能通过反馈验证产品概念,则成功可能性 = 低。

A.3. 最终决策政策

A.3.1. 成功决策政策

基于从成功创始人档案中提取的规则,这里有一个简洁的决策政策,总结了预测创业成功的關鍵條件:

  1. 如果创始人在相关领域有强大的教育背景和广泛行业经验,则成功可能性 = 高。
    1. 如果创始人提供解决重大市场需求的创新产品并展现清晰的增长愿景,则成功可能性 = 高。
    1. 如果创始人展现有效的领导技能并有管理多样化团队的经验,则成功可能性 = 高。
    1. 如果创始人拥有强大的专业网络并参与战略伙伴关系,则成功可能性 = 高。
    1. 如果创始人展示适应市场变化和克服挑战的能力,则成功可能性 = 高。
    1. 如果创始人有先前的创业经验并有成功的履历,则成功可能性 = 高。
    1. 如果创始人有与市场需求一致的战略愿景并关注创新,则成功可能性 = 高。
    1. 如果创始人承诺高质量产品和社会责任,则成功可能性 = 高。
    1. 如果创始人瞄准快速增长的市场并有可扩展的商业模式并展示有效的营销策略,则成功可能性 = 高。
      10.10. 如果创始人在相关技术上有强大的技术专长并提供创新解决方案,则成功可能性 = 高。

A.3.2. 失败决策政策

预测创业失败的决策政策:

  1. 如果创始人没有相关行业经验且缺乏记录在案的专业经验且网络有限且市场研究不足且面临运营挑战且缺乏财务支持,则成功可能性 = 低。
    1. 如果创始人缺乏目标市场的相关经验且专注于没有广泛吸引力的利基产品且缺乏战略性行业联系且涉及分散注意力的多项业务且面临产品开发挑战且营销策略无效,则成功可能性 = 低。
    1. 如果创始人在某个领域有广泛经验但缺乏商业头脑且面临激烈竞争且运营规模难以扩大且遇到财务管理问题,则成功可能性 = 低。
    1. 如果创始人没有之前的创业冒险且在高度竞争的市场中经营且缺乏强有力的营销策略且面临运营挑战且资金不足,则成功可能性 = 低。
    1. 如果创始人有强大的教育背景但缺乏创业经验且面临显著的市场准备挑战且难以获得足够的资金且面临高竞争和监管障碍,则成功可能性 = 低。
    1. 如果创始人在某一特定领域有广泛经验但缺乏明确的价值主张且面临市场饱和且执行不佳且营销策略有限且在敏感经济环境中运营,则成功可能性 = 低。
    1. 如果创始人有多样化的技能但缺乏对核心竞争力的关注且初创企业面临激烈的竞争且没有明确的差异化且运营管理和财务纪律存在问题,则成功可能性 = 低。
    1. 如果创始人在行业内没有相关经验且缺乏明确的商业模式且面临财务约束且执行不佳且可见度和可信度有限,则成功可能性 = 低。
    1. 如果创始人有强大的技术专长但缺乏销售和营销方面的均衡团队且目标市场错位,则成功可能性 = 低。
      10.10. 如果创始人创业经验有限且之前的创业未取得显著成功且在有成熟玩家的高度竞争市场中运营,则成功可能性 = 低。

返回:低

B. o3-mini 推理日志、提取规则和最终决策政策

本节展示了o3-mini模型评估初创企业创始人的推理日志,以及提取的决策规则和最终决策政策。

B.1. o3-mini 推理日志

B.1.1. 创始人A - 成功

创始人A成功的关键原因包括:

  1. 广泛的行业和运营经验:创始人A拥有超过20年的技术、产品开发、管理和战略经验。他们的职业生涯包括在主要公司(例如,公司X、公司Y)担任领导角色,提供了坚实的操作和技术专长。他们作为初创公司CEO的经历,以及以3.6亿美元成功收购的经历,展示了建立、扩展和退出技术驱动型公司的能力。
    1. 强大的技术和商业双重专长:持有软件工程和商业学位,创始人A有效弥合了技术创新和稳健商业策略之间的差距,这对利用技术简化复杂过程的初创公司至关重要。这种背景确保了既能设计可扩展、以用户为中心的平台,又能管理诸如筹集资本和形成战略合作伙伴关系等关键业务操作。
    1. 已验证的领导力和战略视野:在研发领导和企业发展方面的经验——包括管理并购——提供了强大的战略规划能力。他们识别市场需求和颠覆传统行业的能力通过创新的服务模式得以体现。
    1. 信誉和稳固的网络:通过领导成功的风险投资,创始人A建立了一个声誉良好的个人资料和广泛的专业网络,这促进了投资者的信任和顶尖人才的吸引。

结论:

创始人A的深厚行业经验、技术与商业双重专长、已验证的领导力和稳固的网络是其成功的关键驱动力。

B.1.2. 创始人B - 成功

创始人B成功的关键原因包括:

  1. 深厚的金融服务专长:创始人B在金融服务领域的广泛职业生涯——跨越多家主要公司——提供了对市场动态、投资者关系和企业通讯的深刻理解。这种专业知识有助于为其数字资产平台建立信誉。
    1. 坚实的沟通和投资者关系技能:在其首席传播官及投资者关系主管的领导经验中,他们能够有效地向各类利益相关者阐述平台的价值主张,包括机构合作伙伴。
    1. 战略性的网络和行业联系:拥有超过700个专业联系和董事会参与,创始人B充分利用了强大的网络来确保资金机会和战略合作伙伴关系。
    1. 地理和行业匹配:他们对当地金融枢纽的熟悉和匹配有助于在专注于数字资产管理的不断增长的市场中有效定位初创公司。

结论:

创始人B在深厚行业专长、卓越沟通技巧、战略性网络和市场匹配方面的结合是其初创公司成功的核心。

B.1.3. 创始人C - 失败

创始人C失败的关键原因包括:

  1. 产品(市场和技术不匹配):尽管背后有强烈愿景,但产品并未在常规成像方法之上提供明确的临床益处,无法融入现有工作流程。
    1. 监管和验证障碍:产品需要严格的临床验证和监管批准;在证明安全性和有效性方面的延迟或挑战阻碍了市场进入。
    1. 在高风险环境中执行挑战:从企业角色转型为初创企业,执行计划可能缺乏将前沿技术融入手术环境所需的敏捷性。
    1. 市场接受度障碍:由于未能明确展示成果改进,产品在经验丰富的用户中难以广泛采用,负面影响了收入和投资者信心。

结论:

尽管创始人具备深厚的行业经验,但在证明临床价值、应对监管障碍和实现快速市场接受方面面临的挑战导致了失败。

B.1.4. 创始人D - 失败

失败的关键原因源于创始人的薄弱背景:

  1. 最小的专业经验:创始人没有任何记录在案的专业经验、学位或之前的创业冒险,限制了在利益相关者中的可信度。
    1. 缺乏领域专长:在医疗和创业领域缺乏可证明的知识,创始人难以应对监管要求并获得验证。
    1. 有限的网络和可信度:缺乏公开露面、新闻提及或组织领导经历,阻碍了获取导师指导和战略合作伙伴关系的机会。
    1. 不充分的验证和反馈:未能进行试点测试和验证产品概念导致所提供的内容与市场需求不符。

结论:

创始人的不足专业和领域特定资质很可能导致在资金、产品验证和执行方面遇到困难,最终导致失败。

B.2. 提取的决策规则

基于上述推理日志,提取了以下决策规则:

B.2.1. 成功规则

- 创始人A的规则:

如果创始人拥有广泛行业和运营经验(包括领导角色和成功的创业退出)、技术与商业双重专长、经验证的战略领导力和清晰的市场颠覆愿景,以及一个提升可信度的强大专业网络,则成功可能性 = 高。

- 创始人B的规则:

如果创始人在金融服务领域有广泛背景、展现了强大的沟通和投资者关系技能、拥有战略性专业网络并在市场匹配性强的地区运营,则成功可能性 = 高。

B.2.2. 失败规则

- 创始人C的规则:

如果创始人拥有强大的企业行业背景,但未能展示出启动执行所需的敏捷技能以快速验证临床益处、应对监管障碍并推动市场接受,则成功可能性 = 低。

- 创始人D的规则:

如果创始人缺乏专业资历、缺乏相关医学和创业专长、有限的行业网络,则成功可能性 = 低。

B.3. 最终决策政策

B.3.1. 成功决策政策

如果创始人展示了跨学科的学术卓越(例如,在STEM、商业、法律或医学方面的高级学位),并通过早期R&D、创新和产品开发中的实际经验展现出经验证的领域专长,从而带来可衡量的影响,并通过有效管理团队、扩展运营和做出与技术创新增长明确市场需求相一致的战略决策来展现远见卓识的领导力,识别并解决关键市场缺口,提供创新的可扩展解决方案,并利用深厚、多样和活跃的专业网络来确保战略伙伴关系、导师指导和资本,并整合互补技能(包括财务、法规和运营管理能力)以应对新兴和传统部门中的复杂行业挑战,则成功可能性 = 高。

B.3.2. 失败决策政策

预测创业失败的决策政策:如果创始人的背景和专长与初创企业的特定领域要求不匹配(例如,来自非敏捷、过于结构化或非技术角色)或初创企业追求过于雄心勃勃或不聚焦的产品愿景,稀释其核心价值主张,并面临重大执行挑战{包括无法在受监管或传统环境中集成或扩展复杂技术、资源限制、薄弱的运营规划以及缺乏互补的领域特定领导力和战略伙伴关系},并且整体商业战略与创始人相对于初创企业对快速技术创新和敏捷市场适应的需求的核心技能不匹配,则成功可能性 = 低。

C. o3 综合管道。推理日志和决策政策

C.0.1. 精炼前

创始人A - 成功原始推理:

让我们逐步分解创始人A成功的关键原因:

  1. 技术与商业双重专长:创始人A在软件工程和商业方面的教育背景提供了一个独特的技术知识和商业敏锐度的结合。这种双重专长使他们能够深入了解产品开发细节,同时密切关注整体商业策略和市场趋势。
    1. 广泛的科技领域经验:在科技、产品开发和管理方面拥有超过20年的经验,创始人A从领先公司的角色中积累了深厚的实践经验。这种经验磨练了他们的研发技能和预判市场需求的能力。
    1. 成功的创业履历:通过共同创立并领导一家实现重大退出(例如,以3.6亿美元被收购)的公司,创始人A展示了建立和扩展初创企业的能力,从而增强了可信度。
    1. 经验证的领导力和战略视野:在高管和企业发展角色中的经验使创始人A能够采取战略性眼光,推动大规模创新和及时的运营转变。
    1. 强大的运营和管理技能:创始人亲自参与团队和项目的管理,确保敏捷执行和有效决策。
    1. 纪律和高压决策:独特的经历,如军事服务,使创始人具备了在压力下冷静、知情决策的韧性和能力。
    1. 早期识别技术机会:推出一家利用技术改造传统流程的初创企业,彰显了把握新兴市场机会的能力。

结论:

创始人A的成功是由技术专长、广泛经验、已验证的创业成功和远见卓识的领导力的全面整合所驱动的。

创始人B - 成功原始推理:

以下是创始人B成功的原因逐步解释:

  1. 坚实的教育基础:
    创始人B的MBA和商业学士学位提供了战略、财务分析和管理所需的严格培训。
  2. 深厚的金融服务经验:他们的职业生涯涵盖了从股权研究助理到高管领导职位的角色,提供了对市场动态和投资者关系的深刻见解。
    1. 投资者关系和沟通领导:在高知名度沟通角色中的经验建立了获得战略合作伙伴关系所需的信誉。
    1. 多样化的行业曝光和网络建设:在多个行业的曝光结果形成了一个强大的专业网络和丰富了战略见解。
    1. 战略市场匹配:
      在数字资产市场的有效定位使投资者和客户对初创企业的长期可行性充满信心。
  3. 韧性和适应力:
    在动态、高压环境下成功运作的能力凸显了他们应对不确定性的能力。

结论:

创始人B的成功归因于坚实的教育和职业基础、有效的沟通以及广泛的、战略性对齐的网络。

创始人C - 失败原始推理:

以下是解释创始人C的企业失败的原因:

  1. 产品(市场和技术不匹配):尽管产品具有创新性,但它未能清楚地展示出超出现有解决方案的临床效益,导致市场差异化差。
    1. 监管和运营挑战:漫长的监管流程和扩展运营的困难极大地阻碍了市场进入和用户采用。
    1. 资金和资源限制:资金不足限制了初创企业扩展产品开发和商业执行的能力。
    1. 领导和执行问题:团队凝聚力和战略执行的挑战进一步阻碍了进展。
    1. 无效的营销和接受障碍:薄弱的营销策略导致了不足的产品验证和低市场渗透。

结论:

创始人C的失败很大程度上是由于产品与市场不匹配、监管障碍、资金限制和执行缺陷。

创始人D - 失败原始推理:

以下是另一个失败案例的推理:

  1. 缺乏相关经验:创始人缺乏记录在案的专业背景或之前的创业经历,严重限制了可信度。
    1. 不足的领域专长:对目标市场的了解不足导致了不合适的产品供应。
    1. 有限的专业网络:缺乏强大的网络阻碍了获取资金和战略合作伙伴关系的机会。
    1. 不充分的产品验证和适应:未能验证和迭代产品概念导致与市场需求持续不匹配。

结论:

经验、领域专长和网络方面的累积不足导致创始人D的成功可能性较低。

C.0.2. 精炼后

创始人A最终精炼推理:

  1. 技术与商业双重专长:创始人的学术背景在软件工程和商业方面允许有效整合技术洞察与战略市场考虑。

    1. 广泛的行业经验与卓越运营:在科技行业超过20年的经验提供了宝贵的实践经验,并能预见市场趋势。
    1. 已验证的创业履历:成功扩展并退出前一次创业验证了创始人克服创业挑战的能力。
    1. 远见卓识的领导力与战略洞察:高管角色磨练了创始人在高压条件下推动创新和适应运营策略的能力。
    1. 高压决策下的韧性:独特的经历,如服兵役,进一步增强了果断性和韧性。
    1. 对技术机会的早期认知:利用新兴技术颠覆传统行业是抓住市场机会的关键。
      创始人B最终精炼推理:
  2. 扎实的教育和职业基础:高级商业教育(MBA和学士学位)支撑了战略决策和财务纪律。

    1. 深厚的金融服务专长:广泛的金融角色经验提供了对市场动态和风险管理的细致见解。
    1. 有效的领导和沟通:擅长传达复杂概念,建立了战略关系和投资者信任。
      10.4. 广泛和战略性网络:发展良好的网络确保了早期采用者支持和必要的资本。
  3. 市场匹配和韧性:在数字资产领域的战略定位和适应性方法支持了长期成功。

创始人C最终精炼推理:

  1. 监管和临床验证障碍:产品面临广泛的监管要求,推迟了验证和市场进入。
    12.2. 市场整合挑战:来自既定临床实践的阻力导致了市场接受度不足。
  2. 竞争和资本限制:被资金雄厚的现有企业主导,加上资金有限,阻碍了竞争定位。
    13.4. 错误的运营执行:创始人的策略源自企业背景,与初创企业所需的敏捷执行不匹配。

创始人D最终精炼推理:

  1. 不足的专业和领域资质:缺乏相关领域的强大背景严重限制了创始人的战略能力。
    1. 薄弱的网络和资源获取:不充分的专业网络阻碍了获取关键资金和战略合作伙伴关系的机会。
    1. 产品验证和适应失败:无法迭代和改进产品供应导致与市场需求持续不匹配。

C.1. 提取的决策规则

基于精炼后的推理日志,提取了以下决策规则:

C.1.1. 原始成功规则

- 创始人A的规则:

如果创始人拥有技术和商业双重背景,并且在行业中有超过20年的经验,表现出卓越的运营能力,并且有成功的创业经历(例如,扩展公司至重大退出),展现出远见卓识的领导力和战略洞察力——包括高压决策能力,这可能通过独特经历(如服兵役来增强),并且积极识别并利用技术创新传统行业的机会,则成功可能性 = 高。

- 创始人B的规则:

如果创始人持有MBA和商业学士学位,并且在金融服务领域有广泛经验——包括从股权研究助理到高管领导(例如,在洲际交易所等组织)的角色,并且在投资者关系和企业沟通中表现出强大的领导力和沟通能力,并且建立了一个跨行业广泛曝光的专业网络,并且有效将传统金融服务策略与创新数字资产技术对齐,并在高压环境中展现出韧性和适应能力,则成功可能性 = 高。

C.1.2. 原始失败规则

- 创始人C的规则:

如果创始人的技术运营在高度监管的医疗器械领域,需要严格的临床证据和漫长的监管审批,并且医院和手术团队表现出抵制将创新解决方案整合到其既定工作流程中,并且竞争格局由资源充足的现有企业主导,面临资本和战略合作伙伴限制,并且创始人的运营策略——受大型、结构化组织经验的影响——与初创企业的敏捷、风险容忍需求不匹配,则成功可能性 = 低。

- 创始人D的规则:

如果创始人没有记录在案的专业经验,并且缺乏相关领域的特定专长,并且拥有有限的专业网络,并且未能有效验证产品概念,则成功可能性 = 低。

C.2. 精炼提取的决策规则

成功和失败的精炼规则:

规则1. 如果创始人拥有技术和商业双重背景,并且在行业中超过20年的经验表现出卓越的运营能力,并且有成功的创业经历(例如,扩展公司至重大退出),展现出远见卓识的领导力和战略洞察力——包括高压决策能力,这可能通过独特经历(如服兵役)来增强,并且积极识别并利用技术创新传统行业的机会,则成功可能性 = 高。

规则2. “精炼规则:如果创始人持有MBA和商业学位,并且在金融服务领域有广泛经验——包括从股权研究助理到高管领导(例如,在洲际交易所等组织)的角色,并且在投资者关系和企业沟通中表现出强大的领导力和沟通能力,并且建立了一个跨行业广泛曝光的专业网络,并且有效将传统金融服务策略与创新数字资产技术对齐,并在高压环境中展现出韧性和适应能力,则成功可能性 = 高”

规则3. “以下是每项条件明确陈述的规则的精炼版本:如果创始人的技术运营在高度监管的医疗器械领域,需要严格的临床证据和漫长的监管审批,并且医院和手术团队表现出抵制将创新解决方案整合到其既定工作流程中,并且竞争格局由资源充足的现有企业主导,面临资本和战略合作伙伴限制,并且创始人的运营策略——受大型、结构化组织经验的影响——与初创企业的敏捷、风险容忍需求不匹配,则成功可能性 = 低。”

规则4. “如果初创企业的医疗器械在具有严格监管和临床验证要求的环境中运营,并且既定临床实践(例如,来自医院和手术团队的阻力)阻碍市场接受和整合,并且竞争格局由资金充足、已建立的现有企业主导,并且初创企业在商业化、伙伴关系发展和融资能力方面存在局限性,则成功可能性 = 低。”

C.3. 决策政策

C.3.1. 成功决策政策

基于从成功创始人档案中提取的规则,综合决策政策如下:

如果创始人展示出稳健的跨学科学术卓越(例如,STEM、商业、法律或医学方面的高级学位),并通过早期R&D、创新和产品开发中的实践经验展现经验证的领域专长,从而带来可衡量的影响,并通过有效管理团队、扩展运营和做出与技术创新增长明确市场需求相一致的战略决策来展现远见卓识的领导力,识别并解决关键市场缺口,提供创新的可扩展解决方案,并利用深厚、多样和活跃的专业网络确保战略伙伴关系、导师指导和资本,并整合互补技能(包括财务、法规和运营管理能力)以应对新兴和传统部门中的复杂行业挑战,则成功可能性 = 高。

C.3.2. 失败决策政策

预测创业失败的决策政策:

如果创始人的背景和专长与其初创企业的特定领域要求不匹配(例如,来自非敏捷、过于结构化或非技术角色)或者初创企业追求过于雄心勃勃或不聚焦的产品愿景,稀释其核心价值主张,并且面临重大执行挑战(包括无法在受监管或传统环境中集成或扩展复杂技术、资源约束、薄弱的运营规划以及缺乏互补的领域特定领导力和战略伙伴关系),并且整体业务策略与创始人相对于初创企业对快速技术创新和敏捷市场适应的需求的核心技能不匹配,则成功可能性 = 低。

C.4. 精炼决策政策

C.4.1. 成功决策政策

基于从成功创始人档案中提取的规则,综合决策政策如下:如果创始人展示出稳健的跨学科学术卓越(例如,STEM、商业、法律或医学方面的高级学位),并通过早期R&D、创新和产品开发中的实践经验展现经验证的领域专长,从而带来可衡量的影响,并通过有效管理团队、扩展运营和做出与技术创新增长明确市场需求相一致的战略决策来展现远见卓识的领导力,识别并解决关键市场缺口,提供创新的可扩展解决方案,并利用深厚、多样和活跃的专业网络确保战略伙伴关系、导师指导和资本,并整合互补技能(包括财务、法规和运营管理能力)以应对新兴和传统部门中的复杂行业挑战,则成功可能性 = 高

C.4.2. 失败决策政策

预测创业失败的决策政策:如果创始人的背景和专长与其初创企业的特定领域要求不匹配(例如,来自非敏捷、过于结构化或非技术角色)或者初创企业追求过于雄心勃勃或不聚焦的产品愿景,稀释其核心价值主张,并且面临重大执行挑战,包括无法在受监管或传统环境中集成或扩展复杂技术、资源
约束、薄弱的运营规划以及缺乏互补的领域特定领导力和战略伙伴关系,并且整体业务策略与创始人相对于初创企业对快速技术创新和敏捷市场适应的需求的核心技能不匹配,则成功可能性 = 低

C.5. 模拟RL评分后的精炼决策政策:

以下是最终详细的决策政策,经过模拟RL反馈精炼以最小化假阳性:

规则集:成功可能性 = 高

只有在满足以下严格标准时,才预测初创企业有高成功可能性:

  1. 学术与领域专长:
    创始人展示了跨学科的学术卓越(例如,高级学位或专业认证),并证明了技术、临床或运营贡献。
  2. 展现领导力与执行力:创始人展现出富有远见、适应性强的领导力,有管理并扩展运营的履历,将技术见解与市场需求对齐。
    1. 市场匹配与战略专注:初创企业针对一个关键市场缺口,提供了一个经过验证的产品愿景和明确定义的商业策略。
    1. 补充的运营与财务专长:创始人或团队整合了必要的技能(财务、法规、运营),并得到一个强大网络的支持,用于导师指导和资本获取。

规则集:成功可能性 = 低

在以下任何一种情况下,预测默认为低:

  1. 专长不匹配:创始人的背景与初创企业的领域需求不匹配。
    1. 过于雄心勃勃或不聚焦的愿景:产品愿景被稀释或过于复杂,没有明确验证的市场适配。
    1. 执行与运营挑战:在扩展技术、管理资源或高效执行方面存在重大困难。
    1. 战略不匹配:创始人的核心优势与初创企业的运营需求之间存在脱节。
      实施与持续改进:该政策通过实证反馈和模拟结果不断改进。对权重和阈值的持续调整确保高精确度,同时减少假阳性并符合观察到的性能数据。初步测试表现(例如,平均RL分数接近0.051和适度的准确率56.7%从早期样本预测中得出)确认必须将最小、模糊信号解释为低以减少假阳性。高成功率预测仅保留那些所有提取信号均强有力对齐的情况。持续的实证反馈和首次测试结果将迭代调整每个标准的权重。决策阈值和信号将进行迭代调整,以确保高精确度并进一步减少任何假阳性预测。

总结

只有当创始人的高级学术和领域专长、以量化实践经验支持的远见领导力、集中且经过验证的产品和市场匹配、以及整合的运营和财务技能集都明显存在并与初创企业的市场和监管需求一致时,预测才会设定为高。在任何
情况下,如果存在不匹配、焦点稀释、执行挑战或资源和网络不足,保守的结果将是低。

这种全面的方法旨在确保只有具备清晰、经过验证且战略性稳健基础的初创企业才被认为有可能成功,从而减少假阳性并符合观察到的测试性能数据。

参考论文:https://arxiv.org/pdf/2504.12090

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Paper易论

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值