1
st
1^{\text {st }}
1st Mohammadhossein Homaei
媒体工程小组
埃斯特雷马杜拉大学
卡塞雷斯,西班牙
mhomaein@alumnos.unex.es
2
nd
2^{\text {nd }}
2nd Víctor González Morales
3
rd
3^{\text {rd }}
3rd Óscar Mogollón Gutiérrez
媒体工程小组
埃斯特雷马杜拉大学
卡塞雷斯,西班牙
{victorgomo, oscarmg}@unex.es
4
th
4^{\text {th }}
4th Rubén Molano Gómez
5
th
5^{\text {th }}
5th Andrés Caro
媒体工程小组
埃斯特雷马杜拉大学 卡塞雷斯,西班牙
{rmolano, andresc}@unex.es
摘要-农村地区的供水系统面临诸多严重挑战,例如缺乏实时监控、易受网络攻击以及数据处理不可靠等问题。本文提出了一种集成框架,结合基于LoRaWAN的数据采集、机器学习驱动的入侵检测系统(IDS)以及基于区块链的数字孪生(BC-DT)平台,以实现安全透明的水资源管理。该IDS使用长短期记忆(LSTM)自动编码器和孤立森林算法过滤异常或伪造数据,并通过智能合约将验证后的数据记录在私有以太坊区块链上,采用权威证明(PoA)共识机制。经验证的数据被输入到支持实时数字孪生模型中,用于漏损检测、消费预测和预测性维护。实验结果表明,该系统每秒可处理超过80笔交易(TPS),延迟时间低于2秒,同时保持成本效益并可扩展至多达1000个智能水表。本研究展示了一种适用于欠连接农村环境中分散式水基础设施的实际且安全的架构。
索引术语-数字孪生,区块链,网络安全,人工智能,入侵检测系统,水行业
I. 引言
尽管远程传感技术已被证明对水质监测有价值 [1],[2],但就水分配而言,农村地区的高效分配是一个重大问题,尤其是在基础设施薄弱且数字监测稀缺的地方。西班牙许多农村地区仍然依赖过时的手动检查或部分自动化的水分配系统,导致问题检测延迟、使用数据不准确以及人为错误或数据操纵的风险增加。实施数字孪生(DT)可以通过创建水网的虚拟副本来解决这些挑战,使操作员能够检测泄漏、预测需求并优化维护计划。然而,DT系统也面临网络安全风险,因为在数据到达数字模型之前可能会被篡改或伪造 [3],[4]。
DT技术在赛博物理系统中日益重要。它提供物理基础设施的实时虚拟表示,支持高级分析、预测和异常检测 [5]-[7]。DT帮助公用事业运营商识别泄漏、压力异常和异常消耗模式。尽管有这些优势,确保基于DT系统的数据安全性与可信度仍然是一个重大挑战,特别是在涉及多个利益相关者的去中心化环境中。
BC技术为在线平台中的安全数据管理提供了新解决方案。它通过分布式账本技术(DLT)、加密安全性和共识机制确保去中心化和防篡改的信息存储和验证 [4],[8]。此外,智能合约自动化诸如设备注册、实时计费和故障检测等任务,从而减少对中介的依赖并提高问责制 [9],[10]。
为应对这些安全问题,我们的平台整合了基于人工智能(AI)的IDS,识别异常或可疑数据。只有经过验证和信任的数据才会转发到BC,在那里它们被安全地永久存储。我们的方法集成了基于LSTM的异常检测和BC技术,确保精确、安全和透明的水资源管理。没有安全、智能的预测,水资源使用仍将是低效的,决策也会被延误。
本文提出了一种由BC技术支持的集成DT系统,以增强西班牙农村村庄的水分配管理。数据通过长距离、低功耗的LoRaWAN传感器收集,并安全存储在私有BC网络上,为DT创建了一个加密基础。AI和ML技术实现了预测分析和异常检测,支持更好的决策和资源优化。BC和DT技术的集成提高了透明度、可扩展性和可靠性。这种成本效益高的解决方案适合农村社区、水务公司和政府机构。
本文其余部分结构如下:第二部分回顾了DT和BC在水资源管理中的相关研究。第三部分描述了所提出的框架,包括DT架构、基于LoRa的传感器网络以及私有BC的集成。第四部分通过实际测试评估性能、可扩展性和安全性。第五部分讨论关键发现、挑战和影响,并通过强调贡献和建议未来研究方向,以优化基于BC的DT解决方案。
II. 相关工作
A. 水行业的数字孪生
最近的研究强调了DT作为增强水分配系统有效工具的作用。DT技术模拟水网的实时行为,使操作员能够进行泄漏检测、预测水消耗并改进整体维护计划 [5],[11]。例如,DT平台通过预测分析成功减少了水损失,这对提高效率和降低运营成本非常有价值 [6]。然而,现有的DT实现通常忽视关键的网络安全考虑,将来自物联网传感器的数据视为固有的可信,这可能使系统暴露于数据伪造和操纵的风险 [3]。
B. 水分配系统中的安全性
水系统的数字化引入了更多的网络安全威胁,尤其是在广泛部署物联网设备和无线传感器网络(如LoRaWAN)的情况下。Kim等人 [7] 揭示了多种漏洞,包括弱加密方法、不良认证实践和过时的通信协议,使这些系统容易受到未经授权访问、数据伪造和拒绝服务(DoS)攻击。传统的水基础设施网络安全框架往往只能在数据被破坏或损坏后被动检测漏洞,缺乏实时预测检测能力 [13]。因此,迫切需要在数字水基础设施中无缝集成的主动异常检测系统,以在数据到达关键操作层(如DT)之前保护免受威胁。
C. 区块链在数字孪生中的集成
区块链技术已被提议作为一种可行的解决方案,以提高多个领域中数字孪生应用的安全性、透明性和不可变性。例如,Mohammed等人 [14] 使用Hyperledger Fabric保护智能水管理系统中的物联网传感器数据,展示了增强的信任和可追溯性。类似地,基于MQTT的区块链解决方案成功提供了传感器读数的防篡改日志记录,降低了数据丢失和伪造的风险 [15]。尽管取得了这些进展,现有的区块链集成数字孪生框架假设传入数据是有效的,而无需验证,造成漏洞。Teisserenc等人 [16] 通过引入具有智能合约的去中心化数字孪生模型解决了部分限制,用于自动化决策,但缺乏强大的预验证机制以确保数据真实性。因此,在区块链数据存储前进行异常检测对于确保数据完整性至关重要。
D. 人工智能和机器学习在关键基础设施中的入侵检测系统
为了克服传统安全方法的局限性,人工智能和机器学习技术已在关键基础设施(如电网和水系统)中的异常检测中得到广泛应用。孤立森林算法已成功识别基础设施中的统计异常
图1. 水行业中的数字孪生平台 [11]
传感器数据,实现早期攻击和故障检测 [8]。此外,LSTM自动编码器在检测序列数据中的时间异常方面表现出色,例如指示泄漏或网络攻击的异常用水模式 [9],[17]。然而,现有的基于机器学习的入侵检测系统通常是在孤立环境中开发的,缺乏在区块链启用的数字孪生框架内的集成部署。此外,其评估通常在理想化的实验室条件下进行,未能充分考虑间歇性连接或农村运营约束。这一研究空白促使在区块链和数字孪生生态系统内集成人工智能驱动的入侵检测系统,特别是针对农村部署。
III. 提议的平台
在本文中,我们在水行业之前的成果基础上,增强了数字孪生系统,更注重安全、可靠性和数据保护。在 [11] 中提出的数字孪生模型由三个主要层组成(图1):赛博物理系统(CPS)、其数字表示以及基于人工智能的数据分析和预测层。在此更新版本中,我们改进了泄漏检测过程,简化了数据异常的识别,并利用历史数据检测潜在的网络攻击和异常模式。为了提高透明度,我们将一个区块链系统集成进来,将LoRaWAN传感器数据连接到基于以太坊的私有区块链。改进后的系统包含三个关键组件:
- 泄漏和虚假检测层,该层处理传入数据,并将其与季节趋势和长期平均消耗模式进行比较。
-
- 异常和攻击检测层,基于LSTM模型,防止超出范围或不正确的数据插入区块链。
-
- 区块链层,该层使用专用智能合约将前一层验证后的数据安全存储在区块链上。
A. 泄漏检测
确保水系统完整性的第一步是基于时间模式检测泄漏和不切实际的消耗值。平台使用基于规则的逻辑和从长期消耗概况得出的阈值来识别潜在泄漏,尤其是在非使用时间段(如00:00-06:00)。该逻辑假设在预期的不活动期间持续的水流很可能是泄漏。算法1总结了此检测过程,作为调用基于人工智能的入侵检测系统进行进一步验证之前的轻量级过滤机制。泄漏警报会在本地发出,并传递给入侵检测系统以确认异常,然后记录在区块链上。
算法1 泄漏检测和区块链验证
输入:LoRaWAN水表数据流D
输出:泄漏警报,验证的区块链记录
初始化缓冲区H,计数器
对所有
(
d
∈
D
)
(d \in D)
(d∈D)执行
提取小时数据并更新
(
H
)
(H)
(H)
检查夜间(00:00-06:00)消耗
更新泄漏计数器:如果全部大于0,则递增;否则重置
如果计数器
(
≥
2
)
(\geq 2)
(≥2) 则
标记泄漏;冻结状态
如果下一条消息确认泄漏则
警告用户
结束如果
结束如果
在
(
d
)
(d)
(d)上运行IDS
如果检测到异常则
记录并拒绝
否则
存储在区块链上
结束如果
结束循环
B. 基于人工智能的数字孪生入侵检测系统
虽然区块链组件保证了安全和不可变的数据存储,但它无法提供实时保护以防止数据伪造、重放攻击或事务泛洪。为了解决这个问题,我们提出了一个人工智能驱动的入侵检测系统(IDS),该系统在数据采集和区块链层之间运行。这个IDS使用两个互补模型:基于LSTM的自动编码器用于序列异常检测和孤立森林(IF)用于统计离群点检测。它们共同过滤通过LoRaWAN接收的水表数据中的时间和逐点异常,然后再将其存储在区块链上。
- 设计和威胁模型:IDS旨在检测和阻止:
- 伪造数据:具有合理结构但行为不一致的操纵读数。
-
- 重放攻击:重复合法数据以淹没或误导系统。
-
- 离群点:异常高的消耗、意外的错误代码或气体使用异常。
- 虽然智能合约验证发送者身份并强制执行结构规则,但它们无法检测逻辑不一致。算法2 组合LSTM和孤立森林IDS
1 输入:训练好的LSTM模型 M \mathcal{M} M,训练好的IF模型 F \mathcal{F} F,阈值 τ , θ \tau, \theta τ,θ
2 对每个仪表:维持大小为 N N N 的缓冲区 X m \mathbf{X}_{m} Xm
对所有传入事件 e i e_{i} ei 执行
提取特征向量 x i \mathbf{x}_{i} xi 并追加到 X m \mathbf{X}_{m} Xm
计算IF异常分数: s ← F ( x i ) s \leftarrow \mathcal{F}\left(\mathbf{x}_{i}\right) s←F(xi)
如果 s > θ s>\theta s>θ 则
触发异常警报(孤立森林)
拒绝记录并记录事件
否则如果 ∣ X m ∣ = N \left|\mathbf{X}_{m}\right|=N ∣Xm∣=N 则
X m ← M ⋅ decode ( M ⋅ encode ( X m ) ) \mathbf{X}_{m} \leftarrow \mathcal{M} \cdot \operatorname{decode}\left(\mathcal{M} \cdot \operatorname{encode}\left(\mathbf{X}_{m}\right)\right) Xm←M⋅decode(M⋅encode(Xm))
计算重建损失 L recon \mathcal{L}_{\text {recon }} Lrecon
如果 L recon > τ \mathcal{L}_{\text {recon }}>\tau Lrecon >τ 则
触发异常警报(LSTM自动编码器)
拒绝记录并记录事件
否则
接受并转发到区块链
结束如果
从 X m \mathbf{X}_{m} Xm 移除最旧向量
结束如果
结束循环
IDS通过统计和时间模式学习解决了这一差距。
2) 特征工程:IDS连续处理来自LoRaWAN传感器和区块链日志的实时数据流。对于每个新记录,构建一个特征向量为:
x t = [ WaterUsage t , ErrorCode t , TxRate t , GasUsed t ] \mathbf{x}_{t}=\left[\text { WaterUsage }_{t}, \text { ErrorCode }_{t}, \text { TxRate }_{t}, \text { GasUsed }_{t}\right] xt=[ WaterUsage t, ErrorCode t, TxRate t, GasUsed t]
对于LSTM模型,每个仪表维护一个大小为 N N N 的序列:
X m = { x t − N + 1 , … , x t } \mathbf{X}_{m}=\left\{\mathbf{x}_{t-N+1}, \ldots, \mathbf{x}_{t}\right\} Xm={xt−N+1,…,xt}
- LSTM自动编码器架构:LSTM自动编码器学习重建正常行为序列。它将序列编码为潜在表示并重新构建,允许通过重建误差进行异常检测:
L recon = 1 N ∑ i = 1 N ∥ x i − x ^ i ∥ 2 \mathcal{L}_{\text {recon }}=\frac{1}{N} \sum_{i=1}^{N}\left\|\mathbf{x}_{i}-\hat{\mathbf{x}}_{i}\right\|^{2} Lrecon =N1i=1∑N∥xi−x^i∥2
如果
L
recon
>
τ
\mathcal{L}_{\text {recon }}>\tau
Lrecon >τ,其中
τ
\tau
τ 是预先定义的阈值,则标记该序列为异常。
4) 孤立森林异常检测:为了补充LSTM,我们使用孤立森林对单个特征进行训练以检测非顺序异常 [18]。给定一个新的观察
x
t
\mathbf{x}_{t}
xt,孤立森林模型返回一个异常分数
s
(
x
t
)
s\left(\mathbf{x}_{t}\right)
s(xt),该分数基于点在树集合中隔离的难易程度。如果:
s ( x t ) > θ s\left(\mathbf{x}_{t}\right)>\theta s(xt)>θ
其中
θ
\theta
θ 是在训练期间确定的异常阈值,则触发警报。
5) 实时检测算法:检测过程使用滑动窗口缓冲区和智能合约事件触发器实时运行。记录必须通过基于LSTM的序列分析和孤立森林异常检测才能被接受。
图2. 提议的数字孪生平台智能合约
6) 与区块链的集成:IDS通过Web3接口监听智能合约事件(如WaterDataLogged)并相应地缓冲传入记录。其输出决定了数据是否存储在区块链上或被丢弃。选择性地将检测到的异常记录在链上可以提高透明度、支持审计并训练未来的模型。IDS层是模块化的,可以与任何区块链网络或智能合约设计一起部署,确保与去中心化基础设施的无缝集成和兼容性。
C. BC
图2说明了提议平台中使用的智能合约结构。该合约处理基本功能,如仪表注册、安全记录消耗数据和自动事务处理。具体来说,合约定义了一个“WaterData”结构,记录时间戳、用水量、错误代码和关联的仪表ID。registerMeter()、logWaterData() 和 calculatePayment() 等函数设计用于强制访问控制、验证数据并根据消耗和错误代码自动计费,详见算法3。
同时,图3展示了BC层的核心技术。这包括使用具有PoA共识模型的私有以太坊网络,确保快速最终性和最低能耗,特别适合农村环境中的边缘计算场景。数字孪生与智能合约的集成不仅实现了安全
算法3 数字孪生和区块链智能合约
图3. 平台中的区块链侧技术
数据存储,还实现了自主系统行为,减少对中央服务器或人工干预的依赖。通过结合区块链、数字孪生和人工智能驱动的验证机制,该平台为未连接区域的水资源管理提供了一个可扩展、透明和弹性的解决方案。
IV. 评估
本节介绍了在典型西班牙农村村庄条件下对所提议框架的实际评估。我们评估系统级性能——包括吞吐量、延迟和可扩展性——以及安全性和部署成本。在专用Hetzner服务器上部署了具有PoA共识的私有以太坊区块链,并使用LoRaWAN计量环境模拟实时消耗数据。评估包括对硬件/软件设置、网络拓扑、异常检测、抗篡改能力和成本效益的分析。
A. 泄漏检测结果
为了验证泄漏检测机制的有效性,我们分析了过去三年在农村地区部署的400台水表的历史数据。检测算法标记了连续几天夜间消耗非零的水表,暗示可能存在泄漏。
图4. 具有泄漏的水表夜间消耗热图
图5. 正常和中位数使用情况对比
图4显示了夜间(00:00-06:00)水消耗的热图,检测到一个漏水表的一致活动。图5比较了正常消耗模式与中位数使用情况,突显了异常通常偏离预期的季节性或昼夜趋势。此外,图6汇总了所有标记水表的夜间使用情况,强化了检测逻辑的准确性。
B. IDS下的异常检测结果
系统使用注入合成攻击的真实世界水消耗数据进行了评估。图7显示了正常消耗模式和异常模式之间的直接比较。样本线代表典型的使用行为,而模式线揭示了注入的异常,如异常峰值和模仿夜间泄漏或伪造记录的重复低消耗值。
为进一步强调偏差,图8绘制了检测到的异常消耗值与电表的典型
图6. 漏水表及其夜间消耗
图7. 异常检测:夜间泄漏(样本)和峰值模式对比
中位数使用情况。在攻击期间观察到的急剧偏差清楚地表明,IDS如何识别显著偏离正常模式的数据点,同时保持时间一致性。
图9呈现了热图,比较了IDS对每种攻击类型的性能指标——精度、召回率和F1分数。此视觉总结与表I中的定量结果一致,突出了IDS在各种异常类型中的有效性。
表I
混合IDS的异常检测结果
攻击类型 | 注入 | 检测 | 精度 | 召回率 | F1分数 |
---|---|---|---|---|---|
重放攻击 | 120 | 112 | 0.93 | 0.93 | 0.93 |
伪造消耗 | 100 | 97 | 0.91 | 0.97 | 0.94 |
篡改错误代码 | 80 | 76 | 0.89 | 0.95 | 0.92 |
气体使用异常 | 70 | 64 | 0.91 | 0.91 | 0.91 |
总体 | 370 | 349 | 0.91 \mathbf{0 . 9 1} 0.91 | 0.94 \mathbf{0 . 9 4} 0.94 | 0.92 \mathbf{0 . 9 2} 0.92 |
C. 实验设置 BC
- 硬件和软件配置:
提议的框架部署在运行私有以太坊网络的Hetzner服务器上,采用PoA共识机制。三个验证节点通过Docker容器模拟链上验证。来自400个模拟LoRaWAN设备的仪表数据按8小时间隔批量提交。Prometheus和Grafana用于监控。该设置反映了真实世界的农村条件,容忍间歇性连接,同时确保安全、可扩展和低延迟操作。
- 网络拓扑:
- 验证节点:每个验证节点以1秒的区块间隔和15百万的区块Gas限额运行,设置比默认以太坊配置更高的吞吐量和更快的交易确认。我们在同一Hetzner专用服务器上部署了三个验证节点,每个节点在其自己的Docker容器中运行。节点通过安全内部网络通信,使用静态对等发现来保持连接并验证链上交易。
-
- LoRaWAN网关:仪表数据通过复制的LoRaWAN网关传输到区块链,该网关每8小时聚合一次传感器数据。然后将这些读数批量化为交易,再提交链上,确保任何间歇性连接不会导致数据丢失。
-
- 水表测量场景:在我们的测试场景中,我们模拟了安装在多个农村地区的400个水表的行为。每个水表配置为以8小时间隔捕获以下数据:
-
- 表计ID
-
- 时间戳
-
- 水消耗(立方米)
-
- 错误代码
每个表计每天三次发送其数据,以弥补潜在的停机或连接问题。该设置反映了西班牙偏远村庄的实际运行条件,其中不能始终保证稳定的互联网接入。
- 错误代码
D. 性能和可扩展性
在本节中,我们展示了对提议的基于区块链的数字孪生框架的性能分析和可扩展性测试的结果。我们旨在证明系统可以高效处理表计读数,保持低交易延迟,并扩展以适应不断增长的水表数量。
- 交易吞吐量和延迟:
为了评估区块链网络的性能,我们关注了两个核心指标:
- TPS吞吐量:每秒成功确认的交易数量。
-
- 交易延迟(秒):客户提交交易与其最终链上确认之间的时间间隔。
- 我们通过改变批次大小(即多少表计读数被组合成单一链上交易)进行了一系列压力测试。这种方法使我们能够在不同的数据聚合策略下评估系统的性能——这对于农村部署尤其相关,因为间歇性连接可能导致缓冲上传。
- 表II中的平均延迟是指从交易提交到首次包含在区块中的时间。在我们的PoA设置中,最终确认通常发生在包含后的1-2个区块内,对应于典型负载下的额外2-3秒。
表II
不同批次条件下的交易吞吐量和延迟
批次大小 | 测试表计数量 | 吞吐量 (TPS) | 平均延迟 (秒) | 最大延迟 (秒) |
---|---|---|---|---|
1读数/秒 | 400 | 110 | 1.2 | 2.1 |
5读数/秒 | 400 | 96 | 1.5 | 2.4 |
10读数/秒 | 400 | 89 | 1.7 | 2.8 |
20读数/秒 | 400 | 81 | 2.1 | 3.5 |
观察:
- 随着批次大小的增加,吞吐量略有下降,这是由于较大的交易负载需要更多的链上处理时间。
-
- 延迟随批次大小成比例增长。然而,即使每笔交易有20个读数,网络仍能保持平均每秒81笔交易的吞吐量,平均延迟约为2秒。
-
- 这些结果表明,我们的PoA网络可以有效地处理数百个表计的数据突发,使其适合现实世界的部署,其中大量传感器可能定期传输读数。
- 块最终确认:
使用PoA共识机制相比传统的PoW网络提供了更快的块最终确认时间。我们的实验表明,在测试的工作负载下,块通常在 2 − 3 \mathbf{2 - 3} 2−3秒内完成最终确认。这种快速的最终确认有两个主要好处:
- 及时数据记录:水消耗数据几乎立即在链上确认,使数字孪生环境中能够实现近实时监控。
- 预测性维护:快速确认有助于异常检测算法迅速识别不规则现象(如泄漏或传感器故障),减少响应时间和潜在的水损失。
这种短的块最终确认间隔对于农村水管理特别有价值,因为操作员依赖准确、最新的信息来安排维护任务、规划使用模式和优化资源。
- 随着表计数量增加的可扩展性:
为了评估系统在不断增加的传感器数量下的表现,我们通过逐步扩展模拟表计的数量从100到1000,同时保持每笔交易五次读数的批次大小不变,进行了额外的测试。在这些测试中:
- 即使表计数量增加了十倍,网络在所有实验中都保持了超过85 TPS的吞吐量。
-
- 系统延迟显示出最小的增长,证实了基于PoA的框架随着需求增加具有良好扩展性。
-
- 这些结果强调了系统扩展到更大供水网络的潜力,而不会显著降低性能,使其适合小型农村社区和更大的市政部署。
E. 安全性和可靠性
安全性和可靠性是任何关键基础设施(如供水分配)数据管理解决方案的核心支柱。区块链的不可变账本和基于PoA的访问控制共同确保系统具有防篡改和容错能力。下面,我们详细说明采取的措施以防止未经授权的修改并保持网络可靠性。
- 数据不可变性和防篡改:
基于区块链解决方案的主要优势之一是链上记录的不可变性。我们进行了针对性测试以确认恶意尝试修改数据或注入虚假信息将被拒绝:
- 直接数据库操作:我们尝试修改存储在本地节点目录中的原始链上数据文件。PoA共识节点检测到哈希不匹配,无效化了修改的数据。
-
- 智能合约覆盖:我们试图在没有适当凭据的情况下调用特殊管理函数如logWaterData和disableMeter。这些调用被智能合约级别的基于角色的访问控制阻止。
-
- 虚假节点注入:我们引入了一个带有操纵的账本历史的流氓节点,
- 现有验证节点拒绝将其添加到网络中。
- 表III总结了这些测试的结果:
表III
防篡改测试结果
尝试攻击 | 结果 |
---|---|
直接磁盘数据修改 | 被拒绝(不可变账本) |
未经授权的智能合约调用 | 被拒绝(访问控制) |
虚假验证节点引入 | 被阻止(PoA权限管理) |
所有未经授权的修改都被网络的共识协议无效化,确认一旦记录在链上的仪表数据便不可篡改。这种可靠性对于建立市政当局、地方水利部门和终端用户之间的信任至关重要。
- 访问控制和认证:
访问控制通过智能合约强制执行。在仪表可以提交数据之前,必须由授权管理员在链上注册。我们测试了未经授权的提交以评估系统是否会正确拒绝它们:
- 虚假仪表ID:具有未注册仪表ID的交易在isMeterRegistered函数中立即触发拒绝。
-
- 有效仪表ID,错误凭据:如果交易由PoA节点不认可的私钥签名,网络在网络到达合约逻辑之前会丢弃该交易。
- 这些发现确认了框架有效防止未经授权的数据条目,并确保只有有效的仪表读数被集成到数字孪生环境中。
- 农村部署中的网络可靠性:
西班牙农村村庄经常面临间歇性互联网连接。因此,我们的解决方案可以在不丧失数据完整性的情况下容忍临时离线期。我们模拟了一个每周两天每日两小时的连接丢失情景:
- LoRaWAN网关缓冲读数直到BC节点可达。
-
- 重新连接后,待处理的交易以批次形式提交。
-
- 没有发生BC重组,因为PoA验证器将新到达的批次无冲突地纳入。
- 该实验演示了系统的弹性,确认短暂的断电不会损害存储数据的完整性和完整性。这种稳健性对于现实中连续高速互联网并不总是可用的部署至关重要。
F. 成本分析
尽管公共区块链通常需要为每笔交易支付gas费用,我们的私人PoA网络可以配置为施加微不足道或零gas成本,显著减少市政当局的财务负担。我们的PoA节点托管在专用Hetzner服务器上,每月成本在€20到€50之间,具体取决于所选计划。区块链维护也是经济高效的,因为PoA共识消除了CPU密集型挖矿任务,验证节点只需基本计算和存储之外的少量资源要求。就网络流量而言,LoRaWAN到区块链通信仅产生轻微的数据费用,而链上交易费用可以设置为接近零,避免高额的每笔交易费用。系统的可扩展性确保添加更多仪表不会显著增加运营费用,因为相同的验证节点在测试范围内可以高效处理更大的数据量。此外,架构的线性可扩展性确保即使是大规模部署也依然负担得起。表IV提供了一个为期六个月试点项目的成本估算细分,不包括与物理LoRaWAN网关或传感器相关的费用,这些费用因具体部署需求而异。
表IV
六个月试点的成本估算细分
组件 | 成本(欧元) | 备注 |
---|---|---|
服务器租赁(6个月) | €120-300 | 取决于托管计划 |
维护 | 50 | 偶尔的培训、软件更新 |
能源 | 已包括 | 由托管服务覆盖 |
LoRaWAN网关 | 可变 | 根据部署规模和硬件选择 |
链上Gas费用 | 接近零 | PoA网络自定义Gas价格 |
总体而言,这种基于PoA的区块链解决方案对于各种规模的市政当局来说都是经济实惠的,尤其是与可能涉及更高维护和许可费用的传统集中式数据管理系统相比。
V. 结论
本文介绍了一种基于区块链的数字孪生(BC-DT)框架,该框架结合了私有PoA以太坊区块链、LoRaWAN传感器和混合入侵检测系统(LSTM Autoencoder和孤立森林),以提高农村水分配系统的安全性和可靠性。所提议的系统实现了实时异常检测、通过智能合约进行安全数据记录,并支持透明、去中心化的监控。评估结果显示了强大的性能,超过80 TPS,低延迟,防篡改,以及在1000个智能仪表上具有成本效益的可扩展性。该架构对间歇性连接具有弹性,并适应农村基础设施的限制。未来的工作将探索增强功能,如联邦学习用于去中心化模型训练、通过智能合约实现动态定价,以及能源高效的扩展到城市和工业环境。
致谢
本倡议在欧盟(下一代)资助的复苏、转型和韧性计划框架内进行——国家网络安全研究所(INCIBE),作为项目C107/23的一部分:“应用于关键水和卫生基础设施网络安全的人工智能。”
参考文献
[1] A. Cuartero, J. C. Cáceres-Merino, and J. A. Torrecilla-Pinero, “An application of c2-net atmospheric corrections for chlorophyll-a estimation in small reservoirs,” Remote Sensing Applications: Society and Environment, vol. 32, p. 101021, 2023.
[2] J. C. Cáceres Merino, A. Cuartero Sáez, and J. A. Torrecilla Pinero, “Finding optimal spatial window: the influence of size on remote-sensing-based chl-a prediction in small reservoirs,” IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, vol. 17, p. 18769, 2024.
[3] A. Alshami, E. Ali, M. Elsayed, A. E. E. Eltoukhy, and T. Zayed, “IoT innovations in sustainable water and wastewater management and water quality monitoring: A comprehensive review of advancements, implications, and future directions,” IEEE Access, vol. 12, p. 58427-58453, 2024.
[4] M. Homaei, O. Mogollón-Gutiérrez, J. C. Sancho, M. Ávila, and A. Caro, “A review of digital twins and their application in cybersecurity based on artificial intelligence,” Artificial Intelligence Review, vol. 57, no. 8, Jul. 2024. [Online]. Available: http://dx.doi.org/10.1007/s10462-024-10805-3
[5] W. Li, Z. Ma, J. Li, Q. Li, Y. Li, and J. Yang, “Digital twin smart water conservancy: Status, challenges, and prospects,” Water, vol. 16, no. 14, p. 2038, Jul. 2024.
[6] S. R. Krishnan, M. K. Nallakaruppan, R. Chengoden, S. Koppu, M. Iyapparaja, J. Sadhasivam, and S. Sethuraman, “Smart water resource management using artificial intelligence-a review,” Sustainability, vol. 14, no. 20, p. 13384, Oct. 2022.
[7] M. H. Homaei, A. C. Lindo, J. C. S. Núñez, O. M. Gutiérrez, and J. A. Díaz, “The role of artificial intelligence in digital twin’s cybersecurity,” in Proceedings of the RECSI - Reunión Española sobre Criptología y Seguridad de la Información, vol. 6. Spain: RECSI, 2022, p. 7.
[8] A. Fuller, Z. Fan, C. Day, and C. Barlow, “Digital twin: Enabling technologies, challenges and open research,” IEEE Access, vol. 8, pp. 108 952-108 971, 2020.
[9] D. Kirli, B. Couraud, V. Robu, M. Salgado-Bravo, S. Norbu, M. Andoni, I. Antonopoulos, M. Negrete-Pincetic, D. Flynn, and A. Kiprakis, “Smart contracts in energy systems: A systematic review of fundamental approaches and implementations,” Renewable and Sustainable Energy Reviews, vol. 158, p. 112013, Apr. 2022.
[10] T. K. Satilmisoglu, Y. Sermet, M. Kurt, and I. Demir, “Blockchain opportunities for water resources management: A comprehensive review,” Sustainability, vol. 16, no. 6, p. 2403, Mar. 2024.
[11] M. Homaei, A. J. Di Bartolo, M. Ávila, O. Mogollón-Gutiérrez, and A. Caro, “Digital transformation in the water distribution system based on the digital twins concept,” 2024. [Online]. Available: https://arxiv.org/abs/2412.06694
[12] E. Kim, “Ensuring cybersecurity in water distribution networks: a riskbased approach,” Journal of Water Resources Planning and Management, vol. 147, no. 9, 2021.
[13] D. Park and H. You, “A digital twin dam and watershed management platform,” Water, vol. 15, no. 11, p. 2106, Jun. 2023.
[14] M. A. Mohammed, A. Lakhan, K. H. Abdulkareem, M. K. Abd Ghani, H. A. Marhoon, S. Kadry, J. Nedoma, R. Martinek, and B. G. Zapirain, “Industrial internet of water things architecture for data standardization based on blockchain and digital twin technology,” Journal of Advanced Research, vol. 66, p. 1-14, Dec. 2024.
[15] M. Naqash, T. Syed, S. Alqahtani, M. Siddiqui, A. Alzahrani, and M. Nauman, “A blockchain based framework for efficient water management and leakage detection in urban areas,” Urban Science, vol. 7, no. 4, p. 99, Sep. 2023.
[16] B. Teisserenc and S. Sepasgozar, “Adoption of blockchain technology through digital twins in the construction industry 4.0: A pestels approach,” Buildings, vol. 11, no. 12, p. 670, Dec. 2021.
[17] O. M. Gutiérrez, J. C. S. Núñez, M. H. Homaei, and J. A. Díaz, “应用降维和平衡技术于网络安全,” 第七届国家网络安全研究日(JNIC),毕尔巴鄂,西班牙,2022年6月。
[18] B. E. Downey, C. K. Leung, A. G. M. Pazdor, R. A. L. Petrillo, D. Popov, 和 B. R. Schneider, “使用广义孤立森林进行异常检测,” 在高级信息网络与应用中,Springer Nature Switzerland,2024,pp. 356-368。
参考论文:https://arxiv.org/pdf/2504.20275