存在与否 向量本体论作为真正形式化的本体论框架

Kaspar Rothenfusser
2025年5月22日

1 摘要

自埃德蒙·胡塞尔(Edmund Husserl)在20世纪初提出“形式本体论”一词以来(Husserl, 2001b),这一领域逐渐受到越来越多的关注。许多作者如Guizzardi(2005)、Herre等人(2006)、Arp等人(2015),甚至胡塞尔本人(Husserl, 2001b)都声称发展了所谓的形式本体论。然而,我主张,在仔细审视之下,这些所谓的形式本体论无一真正符合胡塞尔意义上的形式化标准。更具体地说,我证明了它们违反了胡塞尔在《逻辑研究》中提出的两个最重要的形式本体论概念,即独立于感知的先验有效性以及完全无内容的形式主义。因此,我建议重新定位以前被认为是形式本体论的工作,将其视为它实际上的基础本体论。这是为了认识到胡塞尔意义上真正形式本体论的潜力。具体而言,我认为遵循胡塞尔条件的形式本体论使我们能够构建本体结构,这些结构可以在不预设特定感知框架的情况下更客观地捕捉存在的基础。此外,我主张通过刻意设计形式结构而不对其内容做出假设,我们可以创建高度可扩展和互操作的信息构件。作为具体证据,我展示了使用向量空间公理的一类形式本体论不仅能够表达基础本体论中的大多数概念化内容,而且还能以独立于人类感知的方式推导出这些先验发生的现象。最重要的是,我主张许多信息系统,特别是人工智能,很可能已经在其内部世界观中使用某种类型的向量本体论来表示现实,并进一步探讨了人类是否也如此。因此,我提议对向量本体论作为一种人类与机器互操作的本体论框架的能力进行深入研究,这将帮助我们理解高度复杂的机器并让机器理解我们。

2 哲学思考与本文的研究范围

我承认,这项工作涉及一些基本的哲学问题,例如主体是否能识别客观——这是一个从笛卡尔到康德再到黑格尔的核心问题。然而,本文的目标并非解决这些争论,我也无意声称自己有足够的专业知识来做到这一点。尽管这些问题是本体论的基础,但本文并不试图回答主体-客体关系的认识论问题,而是提出了一个用于构建本体论表示的形式框架,特别是在计算系统中。向量本体论框架并不声称在绝对哲学意义上识别客观,而是提供了一个数学严谨、可解释的结构,允许进行可扩展和互操作的本体建模。这与传统范畴本体论形成对比,虽然传统本体论形式上表达,但其结构来源于递归抽象,而非先验的数学形式性。尽管辩证方法为动态和分层现实提供了有价值的见解,但本文专注于构建一个严格的正式结构,用于分析人类和机器表示中的本体模式。未来的研究可以探索辩证方法和分层本体如何补充这一框架。

3 埃德蒙·胡塞尔与形式本体论的起源

胡塞尔的《逻辑研究》(Logische Untersuchungen)在20世纪初作为对逻辑在科学中地位的深入分析而出现。他的主要焦点是对心理学主义的系统批判,这是一种由J.S. Mill等人持有的观点,认为逻辑的基本法则,从而逻辑本身,是思想、感知和心理的产物。胡塞尔强烈反对这一观点,并详细阐述了逻辑作为独立于观察和思想的先验有效科学的地位(Husserl, 2001a)。他提倡逻辑必须通过自我评估和内部一致性来保持必然的精确性和真实性。因此,他明确区分了逻辑与实践科学(包括心理学)中使用的概率归纳方法,他认为后者关注的是“仅仅是经验的,即近似的定律”,而非真理(Husserl, 2001a, 第47页)。他还进一步论证逻辑应被视为数学意义上的形式科学,这意味着它应该并且确实关注独立于其内容的形式和结构(Husserl, 2001a)。
在他的后续工作中,《逻辑研究》第二卷(Husserl, 2001b),他首次提出了“形式本体论”这一术语,类似于形式逻辑,应关注“形式概念和命题,它们缺乏所有‘质料’或‘内容’”(Husserl, 2001b, [第19页]),并明确区别于确实处理此类内容的物质本体论,这些内容以领域特定的对象谓词和定律形式存在(Husserl, 2001b)。

因此,他对本体论和形式性的讨论贡献了两个主要论点:

  1. 存在独立于人类及其感知的先验有效结构(例如,形式逻辑),其有效性通过内部一致性实现。
    1. 研究形式本体论(源自希腊语ön, ont- ‘存在’ + -logy ‘科学’)具有极大的价值,即关注在形式意义上“什么是”的结构,而不预设任何内容或经验衍生的事实。
      这些贡献广泛融入了接下来一个世纪的哲学中。一个自称形式本体论的领域逐渐兴起,规模不断扩大(Guizzardi, 2005),并对科学和哲学产生了巨大的积极影响。即使胡塞尔本人在同一著作中,当他认识到其必要性时,也开始构建他声称是这样的形式本体论,通过不断增加抽象概念直到它们失去任何意义并代表“客观范畴”(Husserl, 2001a)。这些范畴包括但不限于“对象、事态、统一、复数、数、关系、连接等”(Husserl, 2001b, 第153页),胡塞尔声称,这些构成了上述定义意义上的形式本体论。他还探讨了将在该领域确立为形式本体论关键问题的主题,例如“整体和部分的纯粹形式理论”(Husserl, 2001b, 第25页),也被称为整体论。

随后是一系列由不同作者开发的形式语言和基础本体论定义(Arp et al., 2015; Guizzardi, 2005; Herre et al., 2006),这些都被定位为形式本体论领域的一部分。这项工作极具影响力,尤其是在现代计算机科学领域,我的意图绝不是质疑其有效性。相反,正是这一知识体系贡献了许多本论证所需的词汇和理论(Guizzardi, 2005; Husserl, 2001a, 2001b)。我也不会争辩说它们在任何意义上都不具备形式性。事实上,大部分文献都是用形式逻辑书写的,并严格从前提推导出来。然而,我主张,尽管它们的方法是形式化的,但所提出的前提,因而产生的本体论,是基础性的,而非形式化的。具体来说,我主张这些本体论违反了上述澄清的胡塞尔形式本体论的两个关键概念,即先验有效性和完全没有经验衍生的内容。

文献中用于创建形式本体论的方法(Arp et al., 2015; Guizzardi, 2005; Herre et al., 2006)遵循胡塞尔在识别事物最终类别方面的引领。分类包括区分持久的事物和非持久的事物(Arp et al.

1 { }^{1} 1 对于不了解概念建模和形式本体论领域工作的读者,我特别鼓励进一步阅读,并推荐Guizzardi, 2005作为全面概述。
al., 2015; Guizzardi, 2005)、属性、关系和数量(Arp et al., 2015; Guizzardi, 2005; Herre et al., 2006)以及不同类型的事物(Arp et al., 2015; Guizzardi, 2005; Herre et al., 2006)。显然,这些类别是通过经验选择的,即使它们用逻辑语言形式表达,它们仍使用一种非形式化的方法,即经验归纳法,来决定哪些分类是有意义的以及它们如何表现。因此,所有使用分类的本体论通过假定的本体论有意义边界来划分事物组。这使得它们必然不是先验的,而是依赖于根植于人类感知的预设本体论视角。从形式上看,可以说这种构建的本体论通过人类感知意义的经验证据发现其公理,而不是像形式逻辑那样定义先验公理。

这同时违反了胡塞尔强加给形式科学的独立于人类意识的有效性存在,以及缺乏内容。

后者显然是这种情况。从具体到总体类别的递归抽象可以渐进地接近完全没有内容的状态,但由于其经验性的归纳性质,它永远无法完全达到。因此,通过胡塞尔、Herrer、Smith、Guizzardi等人的具体递归抽象构建的本体论不能被视为胡塞尔在《逻辑学》中的定义下的真正形式本体论(Husserl, 2001a)。相反,这种方法导致了基础本体论,虽然有效地捕捉了跨领域的结构,但仍关注人类感知现实的领域,因此不是真正的形式本体论。

4 形式本体论

正如关于逻辑所展示的,胡塞尔意义上的形式主义指的是先验有效的结构,与其内容无关,通过内部一致性有效。一个好的例子是一阶逻辑,它定义了一组与任何意义无关的公理。

因此,我主张形式本体论应为一组在任何本体论观察之前且独立于观察的公理定义,而非通过经验验证,而是测试其先验有效性。因此,形式本体论并不承诺是什么,而是提供了一个承载存在的结构。显然,选择这些公理很重要。虽然有许多内部一致的公理集,因此是先验有效的,但似乎合理地假设它们并不会都具有类似的本体论表达力或现实性。

但如果不由本体论现象的经验观察来选择一组公理,我们该如何选择呢?

我提议利用已经开发和理解良好的形式结构。具体来说,我提议利用诸如集合、群及其扩展之类的数学结构作为形式本体论。事实上,大部分基础本体论文献明确或隐含地已经使用集合论和图论来研究整体-部分关系及其他本体论概念(Arp et al., 2015; Guizzardi, 2005; Herre et al., 2006)。然而,与以往工作相反,我提议不是用数学构造作为工具经验地构建本体论,而是将形式本体论定义为数学结构本身,然后将我们的本体论理解映射到这些预先定义的形式上,在其中填充内容以构建基础本体论。我主张这将是真正胡塞尔意义上的形式本体论方法,并带来巨大好处。

这些好处具有双重性质。首先,它使我们揭示更纯粹和真实的现实形态。这是因为我们有一个中立的结构来容纳我们的本体论观察,使我们能够从外部视角分析本体论结构。这相当于从z方向偏移的点观察x-y平面上的二维函数,因为它允许我们在整个2维空间中观察其行为,正是因为观察工具位于该平面之外(在3维空间中)。相应地,我主张需要一个先验定义行为的形式结构来揭示我们感知本体论的形态,进而揭示我们的世界观。

我们在一个结构内观察本体论内容及其行为,而我们无论其内容如何都知道该结构的基本行为。这就是,我们可以观察存在于我们完全理解的结构内的行为。我们对数学结构的理解不是经验的,而是形式的(先验的)。因此,我们可以非经验地完全理解它。另一方面,世界的本体论行为必然需要经验研究并保持物质性。然而,如果域本体的行为发生在我们非经验理解的结构内,那么我们就有了一个经验测量的框架和对存在的真正形式化。

在这种情况下,形式主义的第二个好处是通过其形式选择符合所需要求的结构,而不依赖内容。更具体地说,我们可以选择例如与大多数现代机器学习模型或二进制计算兼容的结构。这与FAIR(可查找、可访问、可互操作和可重复使用)原则中的“I”相关,如Wilkinson等人(2016)所介绍,通过确保在填充本体内容前仅在其形式上保证互操作性。

最后,但同样重要的是,形式本体论在这个意义上确保了描述在其中的世界观的内部一致性。由于公理创建了先验一致和有效的结构,因此不可能构建一个在形式意义上不一致的本体论;然而,相反,我们可以在一个形式本体论内构建许多与我们观察不一致的基础本体论。将填充形式本体论的过程既视为一门艺术又是一门科学,更多细节将在下一节中讨论。
在下一节中,我将通过提出一个具体的正式本体论并讨论其影响来展示上述好处。我还将展示我们提出的正式结构可以用来解释迄今为止理解的所有基础本体论方面,同时清楚地揭示其在人类感知中的根源。

5 向量本体论

作为一个真正形式本体论的具体实例,我提出以下公理定义的向量本体论 V ont  V_{\text {ont }} Vont 

  1. 加法交换律:
    ∀ u , v ∈ V ont  u + v = v + u \forall \mathbf{u}, \mathbf{v} \in V_{\text {ont }} \quad \mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u} u,vVont u+v=v+u

  2. 加法结合律:
    ∀ u , v , w ∈ V ont  , ( u + v ) + w = u + ( v + w ) \forall \mathbf{u}, \mathbf{v}, \mathbf{w} \in V_{\text {ont }}, \quad(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w}) u,v,wVont ,(u+v)+w=u+(v+w)

  3. 加法单位元的存在:
    ∃ 0 ∈ V ont   such that  ∀ u ∈ V ont  , u + 0 = u \exists \mathbf{0} \in V_{\text {ont }} \quad \text { such that } \quad \forall \mathbf{u} \in V_{\text {ont }}, \quad \mathbf{u}+\mathbf{0}=\mathbf{u} 0Vont  such that uVont ,u+0=u

  4. 加法逆元的存在:
    ∀ u ∈ V ont  , ∃ ( − u ) ∈ V ont   such that  u + ( − u ) = 0 \forall \mathbf{u} \in V_{\text {ont }}, \quad \exists(-\mathbf{u}) \in V_{\text {ont }} \quad \text { such that } \quad \mathbf{u}+(-\mathbf{u})=\mathbf{0} uVont ,(u)Vont  such that u+(u)=0

  5. 标量乘法与域乘法的相容性:
    ∀ a , b ∈ F , ∀ u ∈ V ont  , ( a b ) u = a ( b u ) \forall a, b \in \mathbb{F}, \forall \mathbf{u} \in V_{\text {ont }}, \quad(a b) \mathbf{u}=a(b \mathbf{u}) a,bF,uVont ,(ab)u=a(bu)

  6. 标量乘法的单位元:
    ∀ u ∈ V ont  , 1 u = u \forall \mathbf{u} \in V_{\text {ont }}, \quad 1 \mathbf{u}=\mathbf{u} uVont ,1u=u

其中1是 F \mathbb{F} F中的乘法单位元。

7. 标量乘法相对于向量加法的分配律:

∀ a ∈ F , ∀ u , v ∈ V ont  , a ( u + v ) = a u + a v \forall a \in \mathbb{F}, \forall \mathbf{u}, \mathbf{v} \in V_{\text {ont }}, \quad a(\mathbf{u}+\mathbf{v})=a \mathbf{u}+a \mathbf{v} aF,u,vVont ,a(u+v)=au+av

8. 标量乘法相对于域加法的分配律:

∀ a , b ∈ F , ∀ u ∈ V ont  , ( a + b ) u = a u + b u \forall a, b \in \mathbb{F}, \forall \mathbf{u} \in V_{\text {ont }}, \quad(a+b) \mathbf{u}=a \mathbf{u}+b \mathbf{u} a,bF,uVont ,(a+b)u=au+bu

数学家们会认出这些公理就是向量空间的公理 2 { }^{2} 2

5.1 向量本体论的动机

我选择向量空间的公理作为提出的正式本体论的原因在于,我怀疑它们有能力充当一个与人类和机器智能兼容的本体论框架。尤其是后者,长期以来一直是计算机科学领域尚未解决的重大挑战,尽管该领域已认识到其潜在价值。创建一个机器和人类都能理解的可扩展的本体论框架,因此是创建向量本体论的关键原因。这是因为有压倒性的证据表明它们已经被人类和机器使用。

向量本体论与机器

尤其是在最近几十年,利用人工神经网络(ANNs)的机器学习在研究和工业界都获得了越来越多的关注。起源于模仿人脑的努力,它们通过大量数据训练的加权神经连接执行复杂任务。尽管它们在执行各种先进挑战方面取得了成功,但它们往往因其黑箱性质而受到正当批评。具体来说,完成的任务(例如图像分类)是使用所谓的隐藏状态完成的,这些隐藏状态执行的计算并不能完全理解它们与所回答问题的关系(例如,它是猫还是狗)。对此我们应有的直观理解是,尽管它们正确判断,但我们无法理解它们选择答案的任何逻辑。

由ANNs执行的任务,例如图像识别(最成功的应用之一),显然具有本体论性质,例如区分猫和狗所需的判断。这就导致了一种范式,我们知道ANN已经学习了一些本体论,但我们不知道是哪一种。然而,我主张我们非常清楚地知道该本体论的形式,从胡塞尔的意义上讲。

神经网络内的所有处理都是通过属于高维向量空间类的数学运算完成的 3 { }^{3} 3。因此,神经网络中执行的任何本体论任务必然在具有向量空间结构的本体论中执行 4 { }^{4} 4

因此,使用向量空间的公理构建正式本体论有助于更好地理解ANN的内部运作,并设计ANN可以理解的本体论。这显然具有巨大潜力,因为它将允许一个人机互操作的本体论框架。

2 { }^{2} 2 我选择了向量空间而不是更普遍和强大的张量,以稍微降低论证的复杂性。然而,正如我稍后将提到的,我实际上提议的是包括拓扑在内的张量,更多相关内容见后文。
3 { }^{3} 3 数学家和机器学习专家会在这里纠正我,因为这是一个简化。更真实地说,ANNs执行张量运算,而不仅仅是向量运算,并且由于激活函数包含非线性。我们认识到这一点,并在后文中详细讨论了从向量本体论扩展到张量本体论,包括复杂的拓扑;然而,为了论证,我相信您会同意这是比核心问题更多的细节。因此,我们将通过取向量的特殊情况,使非专家更容易跟随论证。
4 { }^{4} 4 更准确地说,是在复杂的非线性拓扑中的张量。

向量本体论与人类

虽然与机器的兼容性显然是向量本体论的一个好处,但当然也会有人问它们是否与人类认知同样兼容。我将展示证据表明人类在神经处理和意识本身中使用向量本体论。然而,为了适当调查人类是否使用向量本体论,我们需要建立对我们对本体宇宙的理解到向量空间正式结构的映射。

因此,我将在下文中讨论这种结构内本体概念的一种可能解释。需要注意的是,有些人可能会合理地指出,这种映射本质上引入了偏差和本体视角,我完全同意。然而,由于我们确信结构(向量空间)的内部一致性,我们可以有效地衡量我们映射的质量,看它在多大程度上创造了本体一致的行为。因此,我鼓励同行提出建设性的批评和希望更好的映射建议。然而,我将展示当前关于基础本体论文献中讨论的许多概念可以通过我提出的映射在向量空间中一致地描述。

需要注意的是,这项工作完全独立于Gardenfors在概念空间上的工作(Gardenfors, 2004),该工作只是在前几天才引起我的注意。Gardenfors提供了一些类似的论据,说明概念空间在理解人类和机器感知方面的实用性,并呼吁建立利用它们的系统。我和Gardenfors都有同样的动机,即找到一种更具生产力、互操作性和建设性的信息表示方式,这种表示方式可以连接解释力和建设能力。事实上,结构化信息是我最终开展这项工作的核心动机之一。我还同意Gardenfors的许多论点,并特别欣赏他对人类感知的一些严格的实证支持。然而,我主张我的工作有一个重要的区别,即真正形式的性质,假设没有内容的结构和形式先验,而Gardenfors基于实证观察。其次,我将本体论完整地定义为一个向量空间,从而产生一个工具来调查出现的现象。这明显不同于Gardenfors提出的利用概念空间来解释我们如何感知的建议。尽管如此,我完全同意他对概念空间及其含义的许多结论。然而,鉴于我们的工作是独立发展的,这些内容超出了本文的讨论范围。因此,我将在提供他关于人类与向量本体论关系的证据时,较为间接地讨论Gardenfors的工作。

5.2 向量本体论中的本体概念

基础本体论中讨论的本体概念在向量本体论中分为三个不同的现象。即在空间本身的结构中,特定点在空间中是否存在(存在向量集),最后是存在向量的模式,我们称之为存在函数。我提前道歉,使用了一些基础本体论的术语而未作适当解释。我推荐Guizzardi, 2005作为前期阅读,它提供了所讨论术语的全面总结。

5.2.1 结构

我们使用向量空间的基向量定义向量本体的结构如下。
对于给定领域D的向量本体 V ont  D V_{\text {ont }_{D}} Vont D,定义为由一组基向量 { x 1 , x 2 , x 3 , … , x n } \left\{x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right\} {x1,x2,x3,,xn}生成的向量空间。这些基向量代表文献中称为普遍性的领域特定质量维度(或属性)(Arp et al., 2015; Borgo et al., 2022; Gardenfors, 2004; Guizzardi, 2005; Herre et al., 2006),我们将正式定义为 B D B_{D} BD(领域基础)。因此,我们正式定义向量本体为:

V ont  D = span ⁡ { x 1 , x 2 , … , x n } , x i ∈ B D V_{\text {ont }_{D}}=\operatorname{span}\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}, \quad x_{i} \in B_{D} Vont D=span{x1,x2,,xn},xiBD

直观地说,这意味着向量本体被定义为一个高维空间,其中每个维度(基向量)代表其中对象的属性。用于构建
向量空间的字段提供了质量值的域(在文献中常称为quale (Guizzardi, 2005))。例如,一个在实数域 R \mathbb{R} R上的向量空间编码连续属性(如身高)。如果想要表示离散属性,则可以使用有限域(或其他适当的离散结构)代替 R \mathbb{R} R。直观地说,这意味着根据我们要编码的质量类型,我们选择每个质量可以接受的适当值集。例如,当编码身高时,我们可能希望允许无限多个可能的任意精度值(数学上为 R \mathbb{R} R),而一个编码形状边数的维度可能只允许自然数,即正整数(数学上为 N \mathbb{N} N)。

示例向量本体用于书架

R \mathbb{R} R为用于表示连续量(或qualia)的真实数域。定义书架领域的向量本体,记为 V ont  shelves  V_{\text {ont }_{\text {shelves }}} Vont shelves ,为在 R \mathbb{R} R上的向量空间,其基为:

V ont  shelves  = span ⁡ { x 1 , x 2 } , x i ∈ B shelves  = {  height, width  } V_{\text {ont }_{\text {shelves }}}=\operatorname{span}\left\{x_{1}, x_{2}\right\}, \quad x_{i} \in B_{\text {shelves }}=\{\text { height, width }\} Vont shelves =span{x1,x2},xiBshelves ={ height, width }

其中:

  • x 1 x_{1} x1 表示对应于高度的通用向量,
    • x 2 x_{2} x2 表示对应于宽度的通用向量。
      因此,对于任何书架实体 s ∈ V ont  shelves  s \in V_{\text {ont }_{\text {shelves }}} sVont shelves ,存在唯一的标量 a 1 , a 2 ∈ R a_{1}, a_{2} \in \mathbb{R} a1,a2R,使得

s = a 1 x 1 + a 2 x 2 s=a_{1} x_{1}+a_{2} x_{2} s=a1x1+a2x2

基的选择确保了本体中的每个实体(在此例中为每个书架)都可以唯一地用选定的质量维度表示。在我们的书架本体中,二维表示反映了假设高度和宽度是我们感兴趣的唯一两个属性。

总之,向量本体的结构被描述为一组有限的基向量 { x 1 , x 2 , x 3 , … , x n } \left\{x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right\} {x1,x2,x3,,xn},表示链接到提供其数量(quale)的字段的质量(通用性)。

5.2.2 存在

本体论(源自希腊语ön, ont- ‘存在’ + -logy ‘科学’)是关于存在的科学,旨在区分存在与不存在的东西。胡塞尔在第一次逻辑研究中清晰地表述了这一点:
“我们可以说,如果它要被称为’知识’,在最狭义、最严格的意义上,它需要显而易见,需要拥有我们所承认的那些东西确实存在,我们所拒绝的那些东西确实不存在的光辉确定性…”(埃德蒙·胡塞尔,《逻辑研究》,第17页)

向量本体论以最纯粹的形式体现了这一概念。事实上,某物是否存在是我们在向量本体论中可以直接提取的唯一信息。我的意思是,即使在定义了空间结构之后,我们的本体论仍然是空的(它只包含未实例化的普遍性)。描述一个对象意味着描述向量空间中实例化领域对象的点(向量)的存在。我们以彩色形状领域为例,描述由代表边数、红色、绿色和蓝色属性的基向量组成的向量本体论。

KaTeX parse error: Expected 'EOF', got '_' at position 46: …{\text { number_̲of_edges, redne…
在这个领域中,只有当向量 [ 4 , 0 , 0 , 255 ] [4,0,0,255] [4,0,0,255]确实存在于向量本体论中时,蓝色矩形才存在:

 蓝色矩形存在  ⟹ [ 4 , 0 , 0 , 255 ] ∈ V colored-shapes  \text { 蓝色矩形存在 } \Longrightarrow[4,0,0,255] \in V_{\text {colored-shapes }}  蓝色矩形存在 [4,0,0,255]Vcolored-shapes 

因此,领域中对象的存在由以下表达式的真理性给出:

v ∈ V domain reality  v \in V_{\text {domain reality }} vVdomain reality 

其中 v v v是代表感兴趣对象的向量。
这揭示了向量本体论的关键假设,即任何感兴趣的对象都可以被完整描述为一个向量空间中的向量,该向量空间具有一组有限的基向量,代表质量维度。很明显,随着所表示对象的复杂性增加,这样的基向量的数量必须大幅增加以捕捉所有的细微之处。然而,我主张它很可能类似于傅里叶变换,其中有一小部分最重要和主导的普遍性解释了大部分对象,并随着添加额外的基向量而渐近地提高分辨率。事实上,用于寻找傅里叶变换的最常见方法之一是识别正交基。哪些基向量包含最相关信息因使用情况而异,因此,选择合适的维度来使用是上下文相关的和重要的。例如,在上述例子中,人们可能对蓝色矩形的颜色不太感兴趣,而是对它的大小或空间位置感兴趣,在这种情况下,应选择或添加其他基向量(大小和欧几里得空间)。

这个将对象定义为 v ∈ V domain reality  v \in V_{\text {domain reality }} vVdomain reality 的真值显示了我们如何使用向量本体论与向量空间本身的区别。向量空间在其数学形式上包含所有可能的向量;因此,它是连续的或密集填充的。然而,向量本体论不仅关注密集填充,还关注描述所有理论上可能对象的密集填充,以及表示现实的向量空间的稀疏填充,这就是我们在表达式 v ∈ V domain reality  v \in V_{\text {domain reality }} vVdomain reality 中要描述的内容,更多内容将在下一节中讨论。

其他作者触及了这样一个事实,即普遍性(在我们的情况下,基向量)并不总是适用于所有对象(例如,想法不能像桌子一样变得更红或更少红)。将对象定义为有限系列的基向量清楚地包含了这一概念,因为基向量通常是为向量空间的子集构造的。因此,适用于领域X的一组基向量可能不适用于领域Y(领域代表向量空间中的一组子向量)。直观上,我们可以理解为,不适用于给定对象的属性/基向量会被缩放为0,从而使它们实际上消失。类似地,如果某个基向量在整个对象集中具有恒定缩放(例如,所有矩形的边数=4),则我们可以消除边数维度,因为它在该领域中不包含信息。更有甚者,给定维度中的恒定值可用于定义领域(例如,矩形的集合)。这通常在机器学习中作为流形理论讨论,它指出我们的大部分现实至少在局部上位于低维子空间中。因此,预计对于一个界限清晰的领域,描述其本体所需的基向量数量将减少,假设我们意识到领域边界。与此一致,我们可以认为真正普遍的基向量是那些可以承载现实中所有本体对象的向量。然而,在给定领域中,我们关注的是该向量空间的一小部分(其向量的子集),这部分可以用少量局部基向量更有效地描述,代表特定领域。 5 { }^{5} 5
因此,经常讨论的“情境”材料性在我们的向量本体概念化中表现为一个位置,在普遍属性空间中导致局部基向量调节全局功能。

5 { }^{5} 5 有人可能合乎逻辑地得出结论,我们应该根据描述其对象所需的基向量集来选择领域边界
总而言之,所有的本体论信息都存在于向量本体论中特定向量或向量集的存在或不存在,以及向量的模式之中——因此本文标题为“存在与否”。

5.2.3 存在模式

现在我们已经恰当地定义了向量本体论的结构和向量存在的意义,接下来我将展示学科迄今一直在研究的实际上是存在的模式。

显然,将现实描述为向量空间中的不连贯稀疏向量是毫无用处的。我们的本体知觉关注的是这些点分布中的模式和显著现象。接下来,我们将考察其中一些模式,并将它们与现有文献中的本体观察联系起来。

存在函数

此时,似乎合适引入我将称之为存在函数 f e f_{e} fe的概念。在数学上,我们引入线性映射。背后的直觉是,如果一个函数应用于给定范围的输入,得到输出的一组向量,我们知道这些向量存在于向量本体论中,那么我们可以提取该函数作为本体中的模式,将单独的存在点统一为更复杂、更统一的结构。

示例存在函数

假设在一个名为人类的领域的向量本体论 V humans  V_{\text {humans }} Vhumans 中,基向量为 x 1 = x_{1}= x1=时间,和 x 2 = x_{2}= x2=体重。如果我们观察到一系列向量 [ 50 , 68 ] , [ 51 , 68 ] , … , [ 60 , 68 ] [50,68],[51,68], \ldots,[60,68] [50,68],[51,68],,[60,68]在连续的时间段内具有恒定的 x 2 x_{2} x2值,我们可以抽象出一个模式,表达为以下函数:

f e ( t ) = { 68   k g  if  49 < t < 61 ?  otherwise  f_{e}(t)= \begin{cases}68 \mathrm{~kg} & \text { if } 49<t<61 \\ ? & \text { otherwise }\end{cases} fe(t)={68 kg? if 49<t<61 otherwise 

直观地说,知道约翰在50岁时体重为68公斤,并且在接下来的10年内没有增重或减重,就足以重构他在那个时间段内的体重。这使我们可以忘记单个向量,而记住这个函数。这似乎符合我们记忆模式的方式。例如,电话号码可能被记住为“三遍0 ”而不是“ 0 , 0 , 0 0,0,0 0,0,0 ”以便更容易回忆。这在心理学领域被称为组块。

在这种情况下,我们对物体边界的感知似乎是将许多向量压缩成一个函数,使我们能够重构它们。例如,与其存储表示一个球体的空间中无数点的布尔存在值,我们只需存储描述该点是否属于球体的方程 ( x 2 + y 2 + z 2 ≤ r 2 ) \left(x^{2}+y^{2}+z^{2} \leq r^{2}\right) (x2+y2+z2r2)。这在概念上等同于人类感知,它将数百万分子统一为一个给定半径、材质和中心的单一球体概念。

总之,数学上所说的线性映射的存在函数使我们能够将存在模式统一为一个单一概念,该概念持有重构信息。因此,它们表示压缩定义的向量子集,通过某种统一函数进行统一。

关于存在函数的数学注释

从数学角度来看,我们正在引入多重线性映射。当我们的感知划定一个物体的边界时,它实际上是在学习一个多重线性映射。这个映射从 V ont  V_{\text {ont }} Vont 映射到一个二进制的存在空间 V 3 V_{3} V3
img-0.jpeg

从事深度学习的计算机科学家可能已经注意到,神经网络确实学习的是多重线性映射(矩阵)。这为本文所述的存在函数在向量结构中的广泛应用提供了额外的证据,目标是学习概念。

由此可知,如果我们讨论的是一个对象或概念,我们指的是一个学习到的函数,该函数将一组向量映射到一个概念单元。我们稍后将看到,存在函数在人类对部分和因果关系的感知中扮演着至关重要的角色。然而,值得注意的是,这些函数和映射并不是由本体论本身使用的,而是为了促进我们对该本体论的调查和解释。

连续性

FOE(存在函数)的一个值得注意的方面是它们的连续性。这里的连续性是指微连续性,即数学上的连续性,要求输入的无穷小变化总是导致输出的无穷小变化。如果存在一个映射到我们领域本体论中向量的存在函数(至少局部)连续,我们就可以谈论一个(部分)连续的FOE。

在稀疏填充的向量空间中的一组向量的微连续性和因此在存在函数中的微连续性是一种罕见且因此有趣的行为。这是,无论其内容如何,在这样的数学结构中的连续性都有一个先验的理由被观察到,无论我们的感知是否特别关注它。

然而,事实证明,FOE的连续性是传统本体论中讨论的最重要的模式之一。先前的作者(Arp et al., 2015; Guizzardi, 2005; Herre et al., 2006)所做的一个重要区分是耐久物和持续物之间的区别。耐久物(在某些文献中称为延续物)是贯穿时间存在的事物或对象;持续物则是包括没有连续时间存在的过程或事件(Arp et al., 2015; Guizzardi, 2005; Herre et al., 2006)。传统本体论指的是存在模式中的特定连续性案例,这些模式是给定的连续函数 f e ( f_{e}( fe( 时间 ) ) ),有时甚至是 f e ( f_{e}( fe( 时间,空间 ) ) )。直观上,我们将耐久性定义为在时间和空间中连续移动。这显然要求时间和欧几里得空间坐标成为我们感知世界本体论的基向量。
耐久物可以定义为在时间上连续的FOE;相对地,持续物不是连续的FOE,实际上它们在向量本体论中根本不构成一个连贯的子集。在向量本体论的背景下,它们似乎是一个由不是连续函数 f e ( t ) f_{e}(t) fe(t)的类别联合而成的。有趣的是,这表明耐久物确实具有我们形式本体论中的一个先验特殊属性,即连续性。另一方面,基础本体论家基于时间上的连续性(一个特定的基向量)来创建类别,这一选择似乎更多地根植于人类感知,而非先验意义。

我们的感知赋予稳定性,因此在时空上的连续性以类别的重要性,这可能表明所述时空连续性作为一种全球规律的确切存在。然而,另一种更有趣的解释可能是,心理或意识本身在这个本体论形式上作为一个时空连续函数存在。

凸区域和整体论

一个重要的本体论问题是部分关系,这个问题在基础本体论中已被广泛研究。

整体论,即关注部分与整体关系的本体论分支,使用一种形式的集合论(Guizzardi, 2005)及相关的联结和交集操作解决了许多这些问题。我提议使用向量本体论中的凸区域来建模这些关系,或者在更数学严谨的术语中,使用凸子集或子空间。

凸子空间

V V V是域 R \mathbb{R} R上的向量空间,且 C ⊆ V C \subseteq V CV。如果对于所有 x , y ∈ C x, y \in C x,yC以及对于每个 λ ∈ [ 0 , 1 ] \lambda \in[0,1] λ[0,1],线性组合

λ x + ( 1 − λ ) y \lambda x+(1-\lambda) y λx+(1λ)y

也属于 C C C,即all x, y \in C, \forall \lambda \in[0,1]: \quad \lambda x+(1-\lambda) y \in C
$$

直观上,这意味着一个凸子空间具有以下性质:对于区域中的任意两点,连接它们的直线上的所有点也在该区域内,也就是说这条线不会穿过区域的边界。相反,凹区域或集合至少存在两个点,当它们被连接时会穿过边界,并且部分直线位于区域之外。这一数学性质优雅地映射到我们对部分与整体的直观理解——如果实体A是实体B的一部分,那么A占据由B在我们的质量维度中定义的“区域”的某个子集。
img-1.jpeg

以汽车发动机作为汽车的一部分为例。在具有空间维度的向量本体论中,发动机占据一个完全包含在汽车所占据的更大凸区域内的凸区域。然而,向量本体论的强大之处在于它允许我们考虑非空间的质量维度。例如,在表示功能属性的维度中,发动机的功能特性(如功率生成、油耗等)形成一个必须与汽车在相同向量本体论中描述的整体功能要求兼容并包含在内的凸区域。因此,我主张先前工作中关于功能性与空间部分的区别以及其他形式并不是结构性不同的,而是发生在具有不同基向量的子空间中,从而创建了一个更连贯和统一的整体论问题理论。

这种形式化的定义允许进一步研究部分关系及其意义。例如,可以测量不同部分与整体结构中心之间的距离(例如,发动机到汽车中心的距离),以定义一种衡量汽车功能中心性的方法。最后,我怀疑这种部分定义将自然聚类形成功能和结构单元或子系统的部分。

集群与凸区域之间的关系也有助于解释为什么某些部分关系可能比其他关系感觉更“自然”。当我们观察本体论空间中密集的向量集群,被相对空旷的区域分隔时,这些通常对应于我们对自然部分或整体的直观理解。这为为什么我们倾向于将某些属性集合识别为构成连贯的对象或部分,而其他可能的组合感觉随意或人为提供了正式解释。

总之,我提议具有良好选择基础的向量空间中的凸区域可以潜在地在一个单一的结构形式中捕捉整体论。这意味着部分关系是一种特殊的存在函数,确定集合的凸性以及特定基向量上的包含和交集。

线性依赖与相关性

向量空间中的基向量应是线性独立的。显然,这并不适用于大多数本体论普遍性,例如我们赋予世界的形容词。这造成了非常明显的问题。让我们来看一个例子。

V max  V_{\text {max }} Vmax 中的线性依赖示例

考虑颜色红色、绿色和黄色。将它们置于向量本体论中,该本体论在显示技术中取得了巨大成功,其基向量为 { r , g , b } \{r, g, b\} {r,g,b}红光、绿光和蓝光。很明显,在这样一个向量空间中,“黄色”是一个颜色的线性组合 r r r g g g
img-2.jpeg
因此,在这个概念化中,黄色不能与仅另外两个向量一起用于构建颜色。我们需要全部三个( r , g , b \mathrm{r}, \mathrm{g}, \mathrm{b} r,g,b)来创建所有可能的颜色。这是我们小时候尝试用黄色和蓝色混合绿色时经历的相同现象(尽管是在减色而非加色的情况下)。由于蓝色是青色和品红色的线性组合,因此它不能与黄色一起使用来创造真正的绿色。我们过去熟知的颜色轮,包含黄色、蓝色和红色,使用线性相关的基向量,这就是它无法混合所有颜色的原因。

有趣的是,上述内容表明我们有时将线性相关向量理解为一个单独的概念(例如,这里的黄色和蓝色)。重要的是,我们在3维空间内具体选择哪组线性无关的基向量似乎有些任意性。例如,CMY颜色空间只是RGB颜色空间的另一种版本,其坐标系统起源于相反的角落,如下所示。
img-3.jpeg

我们可以得出结论,向量本体论中的线性依赖性导致了同样的感知问题(缺乏混色能力),正如向量本体论预测的那样,即它们不是完整向量空间的有效基向量集合,因此难以覆盖可能存在的向量空间(所有颜色)。这就是我主张我们的感知称之为因果关系的情况。也就是说,颜色空间未充分定义的原因在于增加更多的黄光相当于增加更多的绿光和红光。因此,增加黄色导致增加绿色和红色。

这直接引出了下一个要点,即向量空间满足加法和标量乘法的闭包。这意味着任何在向量空间内两个向量相加得到的向量也是该向量空间的一部分,对于标量乘法同样如此。这意味着例如,在彩色形状领域中,假设基础为边数、 r , g , b r, g, b r,g,b,则任意颜色的n边形形状都存在。然而,正如前几节讨论的那样,本体论关注的是区分潜在可能存在和真正存在的事物。因此,我们假设现实存在于理论上完整的向量空间的稀疏填充中。我们已经讨论了存在和不存在作为真值:

v ∈ V omt  v \in V_{\text {omt }} vVomt 
我们还可以讨论可能存在的定义为:

⋄ ( v ∈ V ont  ) \diamond\left(v \in V_{\text {ont }}\right) (vVont )

直观上,这被理解为彩色形状领域中蓝色矩形的理论可能性,但没有保证其实现。在这种情况下,我们无法确切知道它是否存在,从而引发对特定向量存在概率的逻辑兴趣:

p ( v ∈ V ont  ) p\left(v \in V_{\text {ont }}\right) p(vVont )

自然地,如果我们能够学习概率存在函数,称为 f p e f_{p e} fpe,它从特定领域映射到一组向量的存在概率,那将很有帮助:

p ( v ∈ V ont  ) = f p e ( x i , … ) p\left(v \in V_{\text {ont }}\right)=f_{p e}\left(x_{i}, \ldots\right) p(vVont )=fpe(xi,)

我主张概率函数是表达跨科学领域的领域知识的常见方式。无论是电子位置、天气预报、博弈论还是癌症治疗反应,描述概率结果的函数无处不在。就像线性依赖被视为因果关系一样,我提出直观上感知的相关性实际上是一个学习的概率存在函数。也就是说,我们感知到蓝色矩形比1743边的涂鸦形状更有可能存在。

总之,我提议将因果关系定义为概念代表向量之间的严格线性依赖。类似地,我建议将相关性理解为存在概率函数。这也使得因果关系与相关性的含义截然不同,并且不能用相同的方法进行研究。相关性可以通过模式检测学习;然而,因果关系需要更复杂和正式的方法来识别线性依赖。

相似性和导航

我们如何感知相似性是一个Gardenfors, 2004已经将其与向量空间联系起来的问题。Gardenfors的发现直觉是,我们在属性空间中使用Minkowski距离度量来确定事物的相似性,其中较小的距离表示更大的相似性。

Minkowski距离度量(对于任意r)定义为:

d ( x , y ) = ( ∑ i = 1 n ∣ x i − y i ∣ r ) 1 r d(x, y)=\left(\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|^{r}\right)^{\frac{1}{r}} d(x,y)=(i=1nxiyir)r1

它计算向量之间的距离

x = ( x 1 , x 2 , … , x n )  和  y = ( y 1 , y 2 , … , y n ) x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \quad \text { 和 } \quad y=\left(y_{1}, y_{2}, \ldots, y_{n}\right) x=(x1,x2,,xn)  y=(y1,y2,,yn)

通常我们使用特殊情况 r = 2 r=2 r=2,这被称为欧几里得距离。

d ( x , y ) = ( ∑ i = 1 n ∣ x i − y i ∣ 2 ) 1 2 d(x, y)=\left(\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|^{2}\right)^{\frac{1}{2}} d(x,y)=(i=1nxiyi2)21

在各种领域的文献中,使用哪种距离度量在向量空间中是一个高度争议的话题。大部分内容同样适用于向量本体论,就像它适用于任何其他向量空间一样。然而,在我们特定的本体论情况下,有一个新的概念使向量本体论产生了最强大的实用性:重建、外推和可导航性。

重建

向量空间的一个重要公理是闭包。闭包意味着我们可以使用另一个向量和一系列缩放的基向量之和来重建向量空间中的任何向量。这在任意向量空间中并不特别特殊,也没有引起太多关注。

向量空间中的闭包

V V V是域 F F F上的向量空间,其基为

{ b 1 , b 2 , … , b n } \left\{b_{1}, b_{2}, \ldots, b_{n}\right\} {b1,b2,,bn}

那么,根据 V V V的闭包性质(即加法和标量乘法下的闭包),我们有:

∀ a 1 , a 2 , … , a n ∈ F , ∑ i = 1 n a i b i ∈ V \forall a_{1}, a_{2}, \ldots, a_{n} \in F, \quad \sum_{i=1}^{n} a_{i} b_{i} \in V a1,a2,,anF,i=1naibiV

此外,每个向量 v ∈ V v \in V vV都可以唯一表示为基向量的线性组合:

∀ v ∈ V , ∃ ! a 1 , a 2 , … , a n ∈ F  such that  v = ∑ i = 1 n a i b i \forall v \in V, \quad \exists!a_{1}, a_{2}, \ldots, a_{n} \in F \quad \text { such that } \quad v=\sum_{i=1}^{n} a_{i} b_{i} vV,!a1,a2,,anF such that v=i=1naibi

这是因为几乎所有关于向量空间的文献都关注不可解释的特征空间。主要来源于机器学习领域,该领域一直在研究神经网络的学习特征,这些特征大多是无意义的。然而,在向量本体论中,每个维度代表一个本体上有意义的维度。这意味着如果我们理解了质量维度所代表的概念(例如,苹果的甜度),我们就可以预测它的变化代表什么。这使我们能够进行重建和外推,因为我们可以根据局部观察进行全局推理。换句话说,如果我们品尝苹果 e 1 e_{1} e1,我们可以外推或重建苹果 e 2 e_{2} e2的味道,已知:

 苹果  2 =  苹果  1 + 0.5 ∗ [  甜度  ] \text { 苹果 }_{2}=\text { 苹果 }_{1}+0.5 *[\text { 甜度 }]  苹果 2= 苹果 1+0.5[ 甜度 ]

在这个场景中,我们将苹果 e 2 e_{2} e2描述为一个缩放基向量(增加甜度)和参考向量(苹果 1 _{1} 1)的加法。类似地,第三个苹果可以表示为:

 苹果  3 =  苹果  1 + 0.5 ∗ [  甜度  ] + 0.2 ∗ [  红色  ] \text { 苹果 }_{3}=\text { 苹果 }_{1}+0.5 *[\text { 甜度 }]+0.2 *[\text { 红色 }]  苹果 3= 苹果 1+0.5[ 甜度 ]+0.2[ 红色 ]

我提议对此进行一般化,给出一种重建距离 D reconstruction  D_{\text {reconstruction }} Dreconstruction ,通过重建路径 P reconstruction  P_{\text {reconstruction }} Preconstruction 定义如下:

P reconstrcution  = v origin  + ∑ a ∗ x i P_{\text {reconstrcution }}=v_{\text {origin }}+\sum a * x_{i} Preconstrcution =vorigin +axi

其中 v origin  v_{\text {origin }} vorigin 充当参考向量, x i x_{i} xi代表向量本体论的基向量。相应地,我们可以计算重建距离为:

D reconstruction  = len ⁡ ( P construction  ) D_{\text {reconstruction }}=\operatorname{len}\left(P_{\text {construction }}\right) Dreconstruction =len(Pconstruction )

其中重建路径的长度量化了重建距离。大量证据表明,我们的基本关系感知根植于这种重建路径及其长度。

人类感知中的重建路径

我们似乎毫不费力地直观理解了形状相同但大小显著不同的两个物体之间的关系。另一方面,形状多出几条边且大小略有不同的形状似乎不那么相似或不那么相关。你可以在下图中测试这一点,这清楚地表明中间的形状在空间上更接近小三角形而不是大三角形。这在欧几里得距离和曼哈顿距离中都是如此。然而,我们感知到两个三角形之间的关系和相似性比小三角形和五边形之间的关系和相似性更强。我们的感知因此将较少步骤或拐角的重建路径视为较短。
img-4.jpeg

我们倾向于将相似性感知为两个对象之间一些相同维度和一些不同维度的混合。例如,两种相同类型的汽车(例如面包车),但品牌和颜色不同。这表明重建路径在人类感知中起着关键作用。它还提供了一个框架来解释为什么隐喻如此有力。例如,我们可以通过将其与行星运动进行比较来学习原子运动的动力学。这是,我们可以将原子定律重构为行星运动的较小版本,其中引力被替换为电子力。这意味着我们可以表达以下方程:

 运动  原子  =  运动  行星  − 0.999 [  尺寸  ] − 1 [  引力  ] + 1 [  电场力  ] \text { 运动 }_{\text {原子 }}=\text { 运动 }_{\text {行星 }}-0.999[\text { 尺寸 }]-1[\text { 引力 }]+1[\text { 电场力 }]  运动 原子 = 运动 行星 0.999[ 尺寸 ]1[ 引力 ]+1[ 电场力 ]

在这个方程中,运动 原子  _{\text {原子 }} 原子 和运动 行星  _{\text {行星 }} 行星 之间的欧几里得距离和曼哈顿距离会非常大,因为行星与原子相比尺寸极端不同。然而,重建路径却非常短(长度为3),这清楚地表明了比较相关对象时对重建距离的依赖。知道重建路径后,我们可以通过复制大部分来自行星运动的上下文(参考向量)轻松掌握电子围绕质子的运动。因此,隐喻通过在两个案例中不同的有限维度集中的转变来翻译。另一方面,转移的内容或隐喻的有效载荷是那些在两个案例中保持不变的维度,如描述椭圆轨迹和离心力的那些,从而创建一个“共享上下文”。这种类型的学习迁移也被Gardenfors(Gardenfors, 2004)建议为一种我们利用其他概念的知识学习新概念的基本动态。

这展示了向量本体论如何编码上下文和关系。连接点A(原点向量)到点B(目标向量)的路径,只在一组受限的基向量中移动,充当了一种重建或导航指令,告诉我们如何操纵原点向量以找到目标。因此,物体之间的路径代表了我们感知到的它们之间的关系,作为通过质量维度的一系列运动。由于基是可解释的,这使得向量本体论可以直接导航。也就是说,在书籍本体论中,我们可以找到我们最喜欢的漫画的科学版本或《哈利·波特》的成人版本,如果科学性和读者年龄可以用书籍本体论中的基向量组合来表达。我认为这种可导航性将成为向量本体论在搜索任务中极其有价值的属性。

引入物体之间的路径作为有意义的关系也与图论建立了联系。虽然不完全同构,但向量空间可以看作是一个折叠图,其中谓词类型被编码为通过一组有限维度的路径。例如,is_small_model_of关系被描述为在大小维度上的运动,同时保持大多数其他维度稳定。

6 人类与向量本体论

人类感知与向量本体论的关系在上述将几何现象与本体感知联系起来的部分中已有涵盖。然而,Gardenfors已经展示了更多直接证据,表明人类在许多不同情境中使用向量本体论,包括颜色感知、味道、身高和其他属性。他主要基于认知科学和实验方法,这些方法显然支持他的假设,即凸区域显示类型和相似性作为距离的函数。为了简洁起见,如果有人希望深入了解人类使用向量本体论的经验证据,我推荐他的工作进行进一步阅读。

7 向量本体论的建议扩展

很可能为了捕捉现实中的某些本体现象,需要从向量本体论扩展到具有更复杂拓扑结构的张量本体论。这是一个合乎逻辑的步骤,并且将是张量数学的逻辑扩展。我相信这些扩展对受过数学教育的读者来说是足够合理和可推导的,因此在此阶段无需详细说明,可以留待未来的工作。

8 向量本体论的分辨率和成本

向量本体论的分析众所周知计算强度极高。这是由于维度诅咒,使得在许多维度上的计算呈指数级增长的成本。因此,我们需要明智地选择基向量,并考虑给定用例所需的分辨率。

如上所述,我怀疑各个领域(子集/子空间)有一组有限的基向量,类似于傅里叶变换,可以按重要性排序。因此,我怀疑随着维度的增加,我们渐近地接近真实(在我们的结构意义上先验真实)表示,但永远无法达到。然而,如果能成功识别最具影响力的基向量,我怀疑有限且相对可管理数量的维度(数十至数百)将足够。

这显然取决于领域是否事实上是由共享基向量定义的领域。

我主张计算复杂性和渐近行为都是这种方法的优势。向量本体论中的计算,尽管指数级昂贵,但也给我们带来了指数级丰富的回报。这是因为它为我们提供了所有向量跨所有维度的新信息。因此,我们可以充分利用计算资源。直观地说,我的论点是,在这种情况下,增加维度给我们带来了指数级的知识/理解增长。因此,计算资源的使用比加倍LLMs的情境窗口(同时四倍计算成本)更加高效,因为在后者中,基础值(情境长度)线性增长,而成本则平方增长。其次,更重要的是,这种结构为我们提供了一种渐近接近现实的方式,承认其不足之处,即它永远无法完全达到现实。这种方法还清楚地为我们提供了通过增加工作量(计算)来提高成功的机会。

9 预期的批评

本文的目标是激发本体论、计算机科学和认知科学研究人员之间的讨论。虽然我期待听到关于这一问题的新观点,但我已经预见到可能会提出几个论点。为了加速科学讨论,我将在下一节中初步反驳这些观点。

9.1 形式与基础本体论

有些人可能不同意向量本体论是真正形式化的说法,与(Arp et al., 2015; Guizzardi, 2005; Herre et al., 2006; Husserl, 2001b)等人开发的范畴本体论不同。具体来说,他们可能提出以下两种论点之一。

1. 当前的本体论已经在某种意义上是形式化的,因为它们独立于任何领域。

我同意这种说法使得它们在广义上符合“形式化”这个词的定义。然而,胡塞尔在哲学和形式数学中使用的“形式化”一词有更严格的定义。这个定义不能通过递归抽象来满足(见第2节)。术语“基础”比“形式化”更准确地涵盖了领域独立性的概念,因此应该用于递归抽象的范畴本体论。

2. 向量本体论通过选择基向量引入感知偏差,与范畴本体论相同。

我完全同意这一说法;然而,这里有一个重要的区别。向量本体论在其公理中定义了复杂的规则,然后才选择任何基向量。因此,本体论的结构或形式在引入基向量之前就已经存在,因此也不存在感知偏差。一旦我们选择基向量,向量空间的公理会在本体论内部创建复杂的相互作用。然而,这些相互作用源自预先定义的公理,而不是所选的基向量。因此,我们可以检查产生的相互作用是否与我们的本体感知一致,这作为一种对所选基向量的现实检验。这与范畴本体论完全不同,后者在引入感知偏差之前不定义任何结构,因此没有任何东西可以用来验证感知。

9.2 过度简化

有些人可能认为在向量空间中表达每个本体构造过度简化了现实的真正复杂性。尽管我能直观地理解这种担忧,但我认为它未能全面把握当前使用的替代本体结构以及向量空间的复杂性。

当前文献构建的基础本体论描述了诸如对象、属性、模式、耐久物和事件之类的类别(Arp et al., 2015; Guizzardi, 2005; Herre et al., 2006; Husserl, 2001b),并将关系表示为主体谓词宾语三元组。数学上,分类实例化集合论,主体谓词宾语三元组实例化图论,这两者都是比向量空间(或张量)简单得多的数学结构。因此,我主张
声称向量本体论是一种过度简化与当前基于类别和关系的本体论不一致,后者实例化了更简单的结构,但仍被认为能够捕捉现实。

9.3 缺乏身份和类型

Gardenfors的概念空间提案因缺乏身份而受到Guizzardi, 2015的批评,这使得对向量本体论提出类似的批评变得合乎逻辑。Guizzardi, 2015应用到向量本体论而非概念空间时,其论点大致如下:

如果一个对象被定义为高维空间中的一个向量,描述其品质,那么我们如何处理同一对象随时间的品质变化?向量本体论假设莱布尼茨的身份原则,该原则基于不可分辨者的同一性。这意味着不可能有两个具有完全相同属性的不同对象,因此也不可能有两个处于完全相同位置的不同向量。如果两个向量处于相同位置,它们代表相同的对象。这是一个问题,因为单个对象可能会随着时间的推移而改变,同时保持其身份。例如,一个孩子成长为成年人,显然改变了其在时间、空间和属性(如身高、体重、力量等)中的位置,并因此作为一个系列点存在,而不是单一的点。这造成了一个问题,因为个人在时间上的身份不能被描述为恒定的位置或任何形式的恒定,所以Guizzardi, 2015争辩道。此外,描述可能世界中同一个人有不同的职业是不可能的,因为没有办法将这些可能版本的人与向量空间中的单一位置联系起来。相反,一个人会被表示为时间轴上的一系列点,不清楚如何确定哪些点属于同一个人。为了解决这个问题,Guizzardi建议超越静态表示,引入“种类”或分类概念。这种额外的结构指定了哪些属性是本质的,必须保持不变,以便个体保留其身份,即使其他属性随时间变化。他提议这样的概念定义超出了向量空间本身,并应实现为某种结构,将分类与个别概念关联起来,可以认为是“投影到概念空间,定义适当地约束的点集,代表不同世界中同一普通对象的对应物”(第28页)。因此,该结构定义了对象的类型(例如人、狗等),个别概念表示实例化。

我主张这与第4.1.3节中定义的存在(可能)函数在很大程度上是一致的。Guizzardi所描述的投影转化为数学术语本质上是一个线性映射或函数。因此,Guizzardi提出的作为“投影结构”的身份,在数学上类似于我们上面描述的存在函数,其中我们学习描述许多向量作为输出空间的函数,以将许多点压缩成一个概念。与Guizzardi一致,我主张提供身份的函数往往在某些维度上是连续的甚至是恒定的,这意味着我们期望连续性以保持身份,这直接与其耐久性属性相关联(见第4.1.3节)。

这留下了一个问题,即描述的不是一个个别概念,而是类型本身,有些人可能会质疑向量本体论表达类型的能力。

Lopes, 2023在他的卷积神经网络(CNNs)及其学习类型或概念的能力的研究中提出了一个相关的论点。他认为基于向量的本体论系统最终通过相似性或向量空间中的接近性来定义簇。因此,他认为,这并不能清楚地区分类型,因为它不划定直接边界,而是简单估计与其他对象实例的相关性。同样,Guizzardi, 2015认为向量空间无法捕捉类型的概念,因为类型不仅包括属于该类型的对象实例或区域,还包括可能属于该类型的任何事物。因此,通过属性区域定义类型成为一种循环定义,其中边界是基于类型划定的,而类型又是基于边界定义的,从而产生了一个起源问题。

我主张这个问题在上述定义的向量本体论中不会出现。这是因为概念不是区域,而是存在函数,它可以描述区域,但也可能描述波、线或任何其他东西。因此,类型也不会是区域,而是函数类。例如,球体类型必然采取一般形式 ( x + a ) 2 + ( y + b ) 2 + ( z + c ) 2 ≤ r 2 (x+a)^{2}+(y+b)^{2}+(z+c)^{2} \leq r^{2} (x+a)2+(y+b)2+(z+c)2r2,但任何具体的球体实例化为该方程的具体实例,其中 a , b , c , r a, b, c, r a,b,c,r取离散值。

因此,类型实际上可以在向量本体论中描述为具有可调参数的一般函数类。

10 结论

我清楚地证明了迄今为止被归类为形式本体论的内容并未严格符合胡塞尔意义上的形式化。我还建设性地解释了真正形式本体论作为一种更为客观和严谨的方法的潜力,这种方法可以设计其形式以成为一种资产。最后,我清楚地展示了某一类形式本体论,即向量本体论,由于三个关键原因而具有潜力。首先,它们已经被机器和人类隐含使用,并作为两者之间的自然本体接口。其次,它们可以有效地捕捉现有的本体结构,同时为其添加数学结构,从而解释它们之间的关系,并建立对本体论整体更为全面的观点。最后,它们的通用结构可以容纳任意数量的有意义维度,使其可扩展,同时保持可解释性和可导航性。我认为,这种可导航性,连同其机器互操作性,将使它们在自动化知识任务中比传统本体论有用多个数量级。

11 未来工作

如上所述,我希望这一论点能够在哲学、计算机科学及相关领域中引发关于形式本体论框架实用性的讨论。然而,由于本文是理论性的,未来的工作还应实证测试所提出的向量本体论结构。具体而言,我建议进行实验以测试以下从本文中隐含的假设:

  1. 我们可以为特定领域定义完全封装其本体结构的向量本体论。
    1. 我们可以将几个领域的本体结构统一到一个向量本体论中。
    1. 我们可以将所有领域统一到一个向量本体论中。
    1. ANNs在其内部表示中使用向量本体论(我们可以理解)。
    1. 我们可以从ANNs中提取向量本体论。
    1. ANNs可以理解预定义的向量本体论。
    1. 我们可以使用向量本体论构建可解释且高度本体能力的人工知识系统。

12 致谢

如果没有同事Bekk Blando的支持,这项工作是不可能完成的,他的怀疑态度、严谨性和智力投入极大地提升了这一论点,并且他正在与我合作进行我们将在接下来几周内发表的实证证明。我也感谢Elisabeth Bühler和Mats van Dalen对早期概念发展的贡献。

13 参考文献

参考文献

Arp, R., Smith, B., & Spear, A. D. (2015). 构建基本形式本体论的本体论。MIT出版社。

Borgo, S., Ferrario, R., Gangemi, A., Guarino, N., Masolo, C., Porello, D., Sanfilippo, E. M., & Vieu, L. (2022). Dolce: 用于语言和认知工程的描述性本体论。应用本体论,17(1),45-69。

Gardenfors, P. (2004). 概念空间:思想的几何学。MIT出版社。
Guizzardi, G. (2005). 结构概念模型的本体基础。
Guizzardi, G. (2015). 对象类型和跨世界身份的逻辑、本体和认知方面及其在概念空间理论中的应用。概念空间的应用:几何知识表示的案例,165-186。

Herre, H., Heller, B., Burek, P., Hoehndorf, R., Loebe, F., & Michalek, H. (2006). 通用形式本体论(GFO)- 第一部分:基本原则。Onto-Med报告,8。

Husserl, E. (2001a). 逻辑研究第一卷 (D. Moran, 编辑)。Routledge。
Husserl, E. (2001b). 逻辑研究第二卷。Routledge。
Lopes, J. (2023). 深度CNN能否避免内容构成中的无限回归/循环?心智与机器,33(3),507-524。

Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M., Baak, A., Blomberg, N., Boiten, J.-W., da Silva Santos, L. B., Bourne, P. E., 等. (2016). 科学数据管理和保管的FAIR指导原则。科学数据,3(1),1-9。

参考论文:https://arxiv.org/pdf/2505.14940

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Paper易论

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值