基于LLM的AI智能体系统及其在工业中的应用

梁冠南
独立AI研究员
guannan.liang@yahoo.com

童茜茜
计算机科学系
北卡罗来纳大学格林斯博罗分校,NC
q_tong@uncg.edu

摘要

大型语言模型(LLM)的出现重塑了智能体系统。与传统基于规则、任务范围有限的智能体不同,基于LLM的智能体提供了更大的灵活性、跨领域推理能力和自然语言交互能力。此外,随着多模态LLM的集成,当前的智能体系统能够高效处理多样化的数据形式,包括文本、图像、音频和结构化表格数据,从而实现更丰富和适应性更强的真实世界行为。本文全面回顾了从预LLM时代到当前基于LLM架构的智能体系统的演变过程。我们将智能体系统分为基于软件的、物理的和自适应混合系统,并重点介绍了其在客户服务、软件开发、制造自动化、个性化教育、金融交易和医疗保健等领域的应用。我们进一步讨论了由LLM驱动的智能体所面临的首要挑战,包括高推理延迟、输出不确定性、缺乏评估指标和安全性漏洞,并提出了缓解这些问题的潜在解决方案。

索引术语-AI智能体,LLMs

I. 引言

智能体是一种能够感知其环境并采取行动以实现特定目标的自主实体。当多个智能体在一个共享环境中进行协调或竞争时,它们形成一个智能体系统 [1]。人工智能(AI)技术使得AI智能体系统的开发成为可能,将感知、推理、学习和行动整合在一起,以便在动态环境中表现出智能行为 [2]。

近年来,大语言模型(LLM)的进步显著改变了AI智能体系统,推动了自动化和人机协作的发展 [3]-[9]。与主要依赖于任务特定规则 [10],[11] 或强化学习(RL) [12]-[15] 的传统智能体系统相比,基于LLM的AI智能体系统在动态和开放环境中提供了显著更高的适应性。智能体可以处理和生成来自多样化数据模式的见解,包括文本、图像、音频和结构化表格数据。因此,当前的智能体系统展示了向新任务泛化的能力,产生上下文丰富的响应,并使人类与AI之间的交互更加自然。

在LLM时代,人们常常混淆AI智能体系统与AI模型。为了澄清这两个基本概念的区别,建立精确的定义至关重要。智能体代表了一种综合架构,包括环境感知、自主决策-

制定和目标导向的动作执行 [16]。具体而言,

AI智能体被定义为一种自包含的计算实体,它:(1) 通过各种输入模式连续感知和解释其环境,(2) 通过认知功能处理这些感知,以做出上下文感知的决策,(3) 执行适当的动作以实现预定义的目标。相比之下,AI模型构成一个专门的计算组件,执行特定的模式识别或数据转换任务,作为更大系统中的功能性构建块。两者的根本区别在于智能体在其环境中发起和执行动作的自主能力。在LLM范式中,AI智能体系统(图1)通过将多个AI模型与决策框架、交互界面和自动化控制机制系统地集成,创建出复杂且目标导向的AI实体。

为了更好地理解AI智能体系统的设计空间,探索其主要类别是有用的。根据智能体与环境交互的方式,可以将其划分为不同的操作领域和能力。广义上,我们定义了三种主要类型的智能体系统:基于软件的智能体、物理智能体和自适应混合智能体。

基于软件的智能体(沙箱环境)完全在数字环境中运行,并与用户、应用程序或在线数据源交互。它们没有物理存在,但可以通过API、数据库、互联网访问和模拟环境等数字手段影响世界。以下是其一些行业应用场景:基于LLM的聊天机器人和虚拟助手——例如ChatGPT [17]、Claude [18]、Gemini [19]、DeepSeek [20]——以及自动化的金融交易智能体 [21]-[25]。

与仅在数字环境中运行的基于软件的智能体相反,物理智能体是嵌入式系统,能够在现实世界中感知和行动。物理智能体在基于传感器的环境中运行,使用传感器、执行器和机器人与物理世界互动。它们使用传感器(如摄像头、激光雷达和麦克风)感知环境,使用执行器(包括电机、轮子和机械臂)执行动作。物理智能体的应用之一是在智能制造 [26] 中。
img-0.jpeg

图1. 基于LLM的AI智能体系统。

通过结合基于软件和物理智能体的能力,混合智能体作为一种强大的系统类别出现,实现了与现实世界的无缝集成。自适应和混合智能体(现实世界集成)在反馈驱动的环境中运行,通过处理多模态数据(如文本、图像、语音和传感器输入),不断从数字和物理交互中学习,并随时间调整其决策制定。以下是其一些行业应用场景:基于AI的交通管理优化实时道路拥堵 [27],医疗AI助手:监测患者数据、推荐治疗方案并与医生互动的智能体 [28]–[31],基于AI的预测维护系统,结合软件分析与传感器数据 [32],[33],基于AI的供应链管理系统,通过将现实世界的货物跟踪与数字AI预测相结合优化物流 [34]。

大多数现有的关于智能体系统的文献或调查主要集中在两个主要方向:一个关注理论基础,如智能体建模和多智能体协调,另一个则关注实际框架,如强化学习和系统实现 [2]–[9],[12]–[15]。然而,尽管兴趣和潜在影响日益增加,基于LLM的AI智能体系统在现实世界工业环境中的应用仍然相对未被充分研究。本文旨在从行业视角提供对基于LLM的智能体系统发展和分类的一些见解。

II. 智能体系统概述

A. LLM时代之前的智能体系统

在基于LLM的智能体出现之前,传统的智能体通常基于基于规则的逻辑、搜索、规划或RL,通常针对狭窄和特定任务的领域设计。这些系统在结构化环境中表现有效;然而,在处理非结构化数据(如自然语言或图像)或转移到新环境时,它们表现出较差的泛化能力,缺乏适应性,无法实现自然的人工智能交互。

基于规则的智能体系统是最早形式的智能体之一,依靠预定义的规则和决策树进行推理。专家系统如用于医学诊断的MYCIN [10] 和用于化学分析的DENDRAL [11] 使用结构化的如果-那么规则进行特定领域的决策。在整个1980年代和1990年代,业务规则引擎、决策树和逻辑编程系统在医疗、金融和制造业等行业得到了广泛应用 [35]。20世纪90年代引入的多智能体系统实现了分布式决策,允许智能体相互交互以解决复杂的供应链管理和自动交易等问题 [5]。

继基于规则的智能体之后,RL作为训练智能体进行序列决策的强大框架出现,通过与环境交互实现 [12]–[15]。RL智能体通过试错过程最大化累积奖励来学习最优行为。与预定义规则不同,RL智能体通过接收奖励或惩罚形式的反馈自主发现策略。关键算法如Q-learning [36],[37]、深度Q网络(DQN) [38],[39] 和策略梯度方法 [40] 使RL智能体能够掌握复杂任务,包括游戏玩法、机器人控制和动态资源管理。特别是像AlphaGo [41] 这样的系统通过在围棋比赛中击败人类冠军展示了RL的力量,展示了智能体在结构化环境中超越人类专业知识的潜力。然而,RL智能体高度任务特定,往往难以很好地泛化,即使对于小的环境变化也需要重新训练——这与可以零样本或少量样本提示适应任务的LLM不同。

B. 基于LLM的智能体系统

基于LLM的智能体利用LLM [42] 和多模态基础模型 [43] 来实现灵活和自适应的决策制定。这些智能体可以处理文本、图像和音频,使其适用于包括医疗保健 [44]、金融 [45] 和制造业 [46]–[48] 在内的多种行业。与基于规则和RL的智能体不同,基于LLM的智能体不依赖于预定义的决策树和昂贵的
探索,使它们能够泛化到新的和不断发展的任务。

这些智能体能够执行广泛的高级功能,包括自然语言理解、自主问题解决、规划、推理和类似人类的交互。更重要的是,基于LLM的智能体通过启用上下文感知对话、智能虚拟协助和实时决策支持显著增强了人机协作。它们处理多模态输入(如文本、图像和语音)的能力使它们能够在包括视觉数据分析、多回合对话和语音引导工作流程在内的多样化任务中有效运行。这种多功能性使它们在复杂的数据丰富环境中成为有价值的工具。

除了其优势外,基于LLM的智能体还面临几个主要挑战,包括高推理延迟、缺乏标准化基准和评估指标以及隐私问题。我们将在第四节讨论这些挑战。

C. 基于LLM的智能体系统架构

理论上,基于LLM的智能体系统集成了几个关键组件:(1) 核心部分,LLM充当认知引擎,负责高层次推理、规划和自然语言理解。围绕这个核心的是扩展其功能的支持模块:(2) 工具利用,通过多上下文提示(MCP) [49],[50] 等技术实现,允许智能体动态调用API、数据库或第三方模型以完成特定任务;(3) 记忆,通常通过检索增强生成(RAG) [51],[52] 实现,确保智能体可以访问外部知识并避免幻觉 [53],[54];(4) 环境感知,通过多模态输入实现——如文本、图像、语音或传感器数据——由相机和物联网硬件等模型或设备捕获,使智能体能够感知和反应其周围环境;(5) 一个重要的辅助层是护栏机制 [55]-[57],它过滤输入和输出以确保安全、合规性和任务相关性,从而确保在现实世界部署中值得信赖和可靠的行为。

在实践中,我们在图2所示的框架中总结了基于LLM的智能体系统,其中每个组件确保上下文感知、决策效率和可靠的执行。基于LLM的智能体系统从任务输入开始,该输入定义目标并提供智能体必须处理的文本或结构化指令。一旦任务被识别,智能体执行上下文增强,利用外部知识源如数据库、搜索引擎和其他智能体的API调用来确保智能体的决策基于相关和最新的信息,而不是仅仅依赖其预训练的知识。然后系统进入决策和规划阶段,其中LLM模型根据环境上下文、检索到的知识和多模态数据生成结构化响应。然而,由于生成式AI输出可能高度可变
有时甚至无结构,输出护栏机制确保在最终执行前符合预定义格式、验证规则和行业特定约束。最后的动作执行步骤将结构化输出转化为真实世界的命令,无论是与软件交互、触发自动化脚本还是指导机器人系统。系统迭代运行,持续感知环境、调整计划并完善动作,直到成功实现目标。

III. 行业应用

以前关于LLM智能体的调查 [2]-[9] 主要集中在理论基础上,然而,系统设计和跨行业的应用仍需深入探索。在这项工作中,我们将行业应用分为以下关键领域。

A. 聊天机器人:实时客户服务

基于LLM的聊天机器人通过提供动态、上下文感知和自然语言响应彻底改变了客户互动。与传统的基于规则的系统不同,现代聊天机器人可以通过LLM显著提高对复杂查询的理解和响应准确性 [58]-[61]。聊天机器人广泛应用于客户服务、营销自动化和交互式用户界面。例如,基于LLM的聊天机器人系统,如ChatGPT [17]、Claude [18]、Gemini [19]、DeepSeek [20],已被集成到电子商务网站中,以帮助用户进行产品推荐、查询解决和售后服务 [62]。

B. 软件开发

基于LLM的编码助手正在通过自动化代码生成、调试和文档编制来改变软件开发过程 [63],[64]。这些智能体利用先进的自然语言理解将人类指令转化为可执行代码,从而减少手动工作量并提高生产力。例如,正如先前文献中讨论的那样,自动化代码合成智能体的使用大大降低了非专业开发者实施复杂算法的门槛。在网络安全方面,基于LLM的防御和攻击智能体可以主动检测漏洞并模拟潜在的利用,从而增强系统鲁棒性 [65],[66]。此外,专注于行业的编码智能体,如Github Copilot [67]、Cursor [68],通过预测代码片段和建议改进来帮助开发者,使软件工程更加高效。

C. 制造自动化

在制造部门,基于LLM的机器人促进了自动化决策和精确控制 [46]-[48]。它们用于通过解释复杂指令和从大量数据集中提取洞察来自动化诸如产品设计、质量控制和供应链管理等任务。此外,它们在增强机器人控制系统方面也发挥了作用,导致了更创新和高效的制造实践。例如,基于LLM的智能体可以
img-1.jpeg

图2. 基于LLM的智能体系统架构。

显著推进以人为中心的智能制造发展,通过促进人机交互和协作的整合 [26]。

D. 个性化教育

基于LLM的智能体通过为学习者和教育者提供动态、上下文感知的支持,正在重塑个性化教育 [69],[70]。这些智能体主要发挥两种功能:作为教学助手,自动化教学计划、资源推荐、课堂模拟和反馈生成 [71]–[73];作为个性化的学习助手,自适应地支持学生的学习路径 [71],[74]。通过利用记忆、工具使用和规划能力,基于LLM的智能体可以跟踪学生进展、识别学习差距,并动态生成定制练习和反馈。此外,基于LLM的智能体正在特定领域的教育中部署,如数学 [75] 和科学 [76],[77],它们引导学生进行复杂推理任务。这种多方面的支持不仅提高了学习者的参与度和理解力,还减轻了教育者的负担,标志着基于LLM的智能体成为下一代教育生态系统的基础组成部分。

E. 医疗保健

在医疗保健领域,基于LLM的智能体促进了患者互动、病历分析和临床决策支持。这些智能体可以从患者历史中提取关键信息、综合医学知识并生成诊断建议 [44]。例如,会话型医疗保健智能体通过总结患者报告并建议基于证据的治疗来帮助医生。像MDAgents [28]、MedAide [29] 和Polaris [30] 这样的基于LLM的智能体展示了它们如何模拟医患互动、减少认知偏差并在诊断、用药和后续护理等临床阶段协调多智能体工作流。此外,基于LLM的诊断助手可以与工具和数据库交互 [31],通过将症状与医学数据库关联起来提高精度,为临床医生提供更全面的潜在诊断视图。这些应用在提高护理质量的同时最大限度地减少了行政负担。

F. 金融交易

基于LLM的交易智能体正在成为金融市场的一项变革性技术,利用大规模语言模型处理非结构化数据、生成交易洞察并做出知情的投资决策 [45]。这些智能体通常设计为两种角色:作为交易员的LLM智能体 [21]–[25],模型直接输出买入-持有-卖出信号;作为阿尔法矿工的LLM智能体 [78],[79],模型发现用于量化策略的新预测特征。智能体擅长整合多种数据模式:文本(如财务新闻、报告)、数值(如价格时间序列)、视觉(如交易图表)和模拟数据以生成预测或交易动作。这些智能体系统在回测中表现出强劲性能。尽管结果令人鼓舞,但在低延迟、泛化和系统集成方面仍存在挑战,特别是在高频交易和实时决策环境中。

IV. 挑战

A. 高推理延迟

基于LLM的智能体在实际应用中面临的最大挑战之一是高推理延迟,这直接影响了运营成本和计算效率。由于其庞大的参数规模,LLM(如GPT-4)引入了显著的推理开销和长时间的执行延迟 [80]。这导致了较长的响应时间,尤其是在需要实时交互的任务中,如客户服务、金融交易或工业监控。

问题在需要快速决策的环境中变得更加突出。例如,在医疗保健环境中,智能体预计提供快速诊断辅助,高延迟可能损害患者护理。在金融交易中,延迟响应可能导致错过市场机会或造成重大财务损失。高延迟不仅影响用户体验,还增加了基础设施成本,因为维持低延迟响应通常需要部署多个高性能GPU或TPU。此外,随着LLM模型规模扩大,要求低延迟处理的应用程序的推理时间变得越来越不切实际。

为了解决基于LLM的智能体的高推理延迟问题,压缩模型和高效部署策略的结合是至关重要的。通过量化 [81]–[85]、修剪 [86]–[88] 和知识蒸馏 [89]–[91] 压缩模型可以减少模型大小并加快处理速度而不会显著降低准确性。优化计算 [92]–[96] 和内存 [97],[98] 的高效部署实践进一步缓解了延迟问题。此外,通过边缘计算部署LLM智能体并利用TPU等硬件加速器可以增强实时响应能力。为重复任务实施缓存机制并通过自适应采样最小化不必要的全模型推理也有助于减少处理时间和运营成本,使LLM智能体更适合实时应用。

V-B LLM输出的不确定性

LLM智能体经常面临产生不确定或不可靠输出的挑战 [99],或产生幻觉 [100]。由于LLM是在大量和多样化的数据集上训练的,它们可能会生成上下文不准确、有偏见甚至事实错误的响应。这种不确定性在法律文件分析、医疗诊断或自主系统等高风险应用中是个问题,因为不正确的输出可能导致严重后果。此外,LLM可以生成听起来可信但实际上完全虚假的信息,这可能削弱用户信任和系统的可靠性。这种不确定性使得在需要高精度和一致性的任务关键环境中集成LLM智能体变得困难。

为了解决LLM输出的不确定性,必须在输出层后集成一个防护层,作为后处理验证机制 [55]–[57]。这个防护层可以采用诸如事实一致性检查、分布外检测和上下文验证等技术来过滤和细化生成的响应。此外,利用集成方法,其中多个LLM实例提供响应并通过投票机制选择最一致的输出,可以增强可靠性 [101]–[103]。通过检索增强生成(RAG) [52] 和外部工具 [50],[104] 集成外部知识库以交叉检查事实也可以降低误导信息的风险。在高风险应用中,纳入人在环系统确保敏感输出在部署前经过人工验证。这些策略共同提高了LLM智能体的稳健性,最小化累积错误并保持用户信任。

V-C 缺乏基准和评估指标

在开发和部署基于LLM的智能体系统过程中,缺乏标准化的基准和评估指标是一个关键挑战 [105]。虽然有许多研究和指标旨在评估LLM本身的性能,但这些指标在应用于涉及决策、多模态处理和人机交互的复杂智能体系统时往往不足 [4]。基于LLM的智能体不仅仅是生成连贯文本——它们还执行诸如规划、与其他系统交互以及适应动态环境等任务。因此,评估其性能需要一种综合的方法,考虑不仅仅是语言准确性,还包括任务成功率、适应性、上下文意识和人类满意度。缺乏普遍接受的基准使得比较不同系统、跟踪进展和确保实际应用中的可靠性变得困难。

因此,有必要开发特定领域的基准和多维度评估框架,考虑到基于LLM的智能体的多样化功能。一种有前景的方法是创建以任务为导向的指标,根据目标达成和交互质量评估性能,例如任务成功率、对话连贯性和响应准确性 [106]–[110]。此外,采用以用户为中心的评估方法——如用户满意度调查和反馈——可以捕捉自动化指标可能遗漏的定性方面 [111]。另一种策略是开发模拟环境,模仿现实任务,允许对智能体性能进行受控和可重复的测试。基准竞赛和为多智能体交互 [8] 和现实场景 [112] 编辑的共享数据集也可以帮助建立社区标准。通过结合定量指标与定性评估,基于LLM的智能体的评估可以变得更加全面,从而实现一致的比较并促进创新。

V-D 安全和隐私问题

在部署基于LLM的智能体系统时,安全和隐私是重要挑战,因为它们容易受到攻击和数据泄露的影响。其中一个最关键的问题是AI智能体系统的越狱,对手通过操纵输入提示绕过安全机制,导致智能体生成有害或不道德的内容 [113]–[115]。这种漏洞可以被利用来传播虚假信息、生成恶意代码或执行未经授权的操作。此外,基于LLM的智能体经常处理敏感的用户数据,存在无意的数据泄露风险。攻击者可以使用提示注入攻击诱骗模型泄露专有或个人信息 [116]。此外,
模型倒置攻击可能从模型的响应中重建训练数据,违反数据隐私法规。这些安全漏洞可能导致重大危害,特别是在数据保密性和系统完整性至关重要的行业中,如金融、医疗和关键基础设施。

为了解决安全和隐私问题,必须在整个基于LLM的智能体系统中实施多层次的防御机制。首先,纳入一个主动过滤和验证用户输入的防护层可以帮助检测和阻止潜在的越狱尝试 [56]。利用对抗性训练技术,即在训练期间暴露模型于有害提示,可以提高对提示注入的鲁棒性 [117],[118]。此外,采用差分隐私技术可以确保模型的响应不会无意中泄露训练集中的个别数据点 [119],[120]。部署内容审核管道 [121] 和使用响应验证机制 [122] 可以进一步防止生成不当或有害的输出。通过整合这些主动措施,基于LLM的智能体系统可以构建得更加安全和符合隐私要求。

V. 结论

本文研究了基于LLM的AI智能体系统,追溯了它们从基于规则和强化学习框架到现代基于LLM驱动架构的演变。通过考察历史和当代发展,我们提供了对LLM和多模态AI技术如何塑造下一代智能体的结构化理解。然后,我们展示了基于LLM的智能体如何通过实现自动化、智能决策和增强的人工智能协作来革新各个行业。尽管具备强大的能力,基于LLM的智能体仍然面临几个挑战,如高推理延迟、输出不确定性、评估指标不足和安全漏洞。解决这些问题需要结合模型优化、高效部署策略、稳健的评估框架和多层次的安全协议。随着基于LLM的智能体继续发展,开发增强其可扩展性、可靠性和伦理合规性的解决方案至关重要。未来的研究应聚焦于创建更适应和情境感知的智能体,无缝集成到复杂的工业生态系统中。通过应对现有挑战,下一代智能体系统可以在更广泛和更可靠的现实世界应用中取得成果。

参考文献

[1] E. Oliveira, K. Fischer, and O. Stepankova, “多智能体系统:哪些研究适用于哪些应用,” 机器人与自治系统, vol. 27, no. 1-2, pp. 91-106, 1999.
[2] Z. Durante, Q. Huang, N. Wake, R. Gong, J. S. Park, B. Sarkar, R. Taori, Y. Noda, D. Terzopoulos, Y. Choi et al., “智能体AI:多模态交互的视野调查,” arXiv预印本arXiv:2401.03568, 2024.
[3] T. Masterman, S. Besen, M. Sawtell, and A. Chao, “用于推理、规划和工具调用的新兴AI智能体架构的景观:一项调查,” arXiv预印本arXiv:2404.11584, 2024.
[4] J. Xie, Z. Chen, R. Zhang, X. Wan, and G. Li, “大型多模态智能体:综述,” arXiv预印本arXiv:2402.15116, 2024.
[5] A. Dorri, S. S. Kanhere, and R. Jurdak, “多智能体系统:综述,” IEEE Access, vol. 6, pp. 28573-28593, 2018.
[6] Y. Li, H. Wen, W. Wang, X. Li, Y. Yuan, G. Liu, J. Liu, W. Xu, X. Wang, Y. Sun et al., “个人LLM智能体:关于能力、效率和安全性的见解和调查,” arXiv预印本arXiv:2401.05459, 2024.
[7] X. Huang, W. Liu, X. Chen, X. Wang, H. Wang, D. Lian, Y. Wang, R. Tang, and E. Chen, “了解LLM智能体的规划:综述,” arXiv预印本arXiv:2402.02716, 2024.
[8] T. Guo, X. Chen, Y. Wang, R. Chang, S. Pei, N. V. Chawla, O. Wiest, and X. Zhang, “基于大语言模型的多智能体:进展与挑战的综述,” arXiv预印本arXiv:2402.01680, 2024.
[9] X. Li, S. Wang, S. Zeng, Y. Wu, and Y. Yang, “基于LLM的多智能体系统综述:工作流程、基础设施和挑战,” Vicinagearth, vol. 1, no. 1, p. 9, 2024.
[10] W. Van Melle, “Mycin:一个基于知识的传染病诊断咨询程序,” 国际人机研究杂志, vol. 10, no. 3, pp. 313-322, 1978.
[11] B. G. Buchanan and E. A. Feigenbaum, “Dendral和Meta-Dendral:它们的应用维度,” 在《人工智能读物》中。Elsevier, 1981, pp. 313-322.
[12] S. Gronauer and K. Diepold, “多智能体深度强化学习:综述,” 人工智能评论, vol. 55, no. 2, pp. 895-943, 2022.
[13] T. T. Nguyen, N. D. Nguyen, and S. Nahavandi, “用于多智能体系统的深度强化学习:综述挑战、解决方案和应用,” IEEE Transactions on Cybernetics, vol. 50, no. 9, pp. 3826-3839, 2020.
[14] P. Hernandez-Leal, B. Kartal, and M. E. Taylor, “多智能体深度强化学习的综述与批判,” 自主代理和多智能体系统, vol. 33, no. 6, pp. 750-797, 2019.
[15] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath, “深度强化学习:简要综述,” IEEE Signal Processing Magazine, vol. 34, no. 6, pp. 26-38, 2017.
[16] M. Wooldridge and N. R. Jennings, “智能体:理论与实践,” 知识工程评论, vol. 10, no. 2, pp. 115152, 1995.
[17] OpenAI, “OpenAI的Chatgpt,” https://openai.com/index/chatgpt/.
[18] Anthropic, “Anthropic的Claude:一个人工智能助手,” https://www.anthropic.com/claudc.
[19] Google, “Google的Gemini:人工智能,” https://gemini.google.com/app.
[20] DeepSeek, “DeepSeek:下一代开源LLM,” https://www.deepseek.com/.
[21] M. Wang, K. Izumi, and H. Sakaji, “LLMfactor:通过提示提取盈利因子以实现可解释的股票运动预测,” arXiv预印本arXiv:2406.10811, 2024.
[22] G. Fatouros, K. Metaxas, J. Soldatos, and D. Kyriazis, “大型语言模型能否战胜华尔街?揭示人工智能在股票选择中的潜力,” arXiv预印本arXiv:2401.03737, 2024.
[23] A. Lopez-Lira and Y. Tang, “Chatgpt能否预测股票价格波动?回报可预测性和大型语言模型,” arXiv预印本arXiv:2304.07619, 2023.
[24] Y. Li, Y. Yu, H. Li, Z. Chen, and K. Khashanah, “Tradinggpt:具有分层记忆和不同性格的多智能体系统以增强金融交易性能,” arXiv预印本arXiv:2309.03736, 2023.
[25] W. Zhang, L. Zhao, H. Xia, S. Sun, J. Sun, M. Qin, X. Li, Y. Zhao, Y. Zhao, X. Cai et al., “一种用于金融交易的多模态基础智能体:工具增强、多样化和通才,” 在第30届ACM SIGKDD知识发现与数据挖掘会议上发表的论文, 2024, pp. 4314-4325.
[26] Z. Keskin, D. Joosten, N. Klasen, M. Huber, C. Liu, B. Drescher, and R. H. Schmitt, “基于LLM的人机交互在动态制造过程环境中的自适应决策,” IEEE Access, 2025.
[27] S. Dikshit, A. Atiq, M. Shahid, V. Dwivedi, and A. Thusu, “人工智能在优化车辆路线和减少城市地区交通拥堵中的应用,” EAI认可的能源网络交易, vol. 10, pp. 1-13, 2023.
[28] Y. Kim, C. Park, H. Jeong, Y. S. Chan, X. Xu, D. McDuff, H. Lee, M. Ghassemi, C. Breazeal, H. Park et al., “MDAgents:用于医疗决策的自适应LLM协作,” 神经信息处理系统进展, vol. 37, pp. 79410-79 452, 2024.
[29] J. Wei, D. Yang, Y. Li, Q. Xu, Z. Chen, M. Li, Y. Jiang, X. Hou, and L. Zhang, “Medaide:通过专门的LLM多智能体协作实现全方位医疗助手,” arXiv预印本arXiv:2410.12532, 2024.
[30] S. Mukherjee, P. Gamble, M. S. Ausin, N. Kant, K. Aggarwal, N. Manjunath, D. Datta, Z. Liu, J. Ding, S. Busacca et al., “Polaris:一种面向医疗保健的安全为重点的LLM星座架构,” arXiv预印本arXiv:2403.13313, 2024.
[31] N. Mehandru, B. Y. Miao, E. R. Almaraz, M. Sushil, A. J. Butte, and A. Alaa, “评估诊所中的大型语言模型作为智能体,” NPJ数字医学, vol. 7, no. 1, p. 84, 2024.
[32] S. Mazumdar, “工业4.0中的人工智能产品数据管理:文献分析.”
[33] A. Abbas, “工业系统中用于预测维护的人工智能,” 国际先进工程技术和创新期刊, vol. 1, no. 1, pp. 31-51, 2024.
[34] N. Shobhana, “通向更高效率的人工智能供电供应链,” 在管理中的复杂人工智能动力和交互. IGI Global, 2024, pp. 229-249.
[35] T. H. Davenport and J. G. Harris, “自动化决策的时代已经到来,” MIT Sloan Management Review, vol. 46, no. 4, p. 83, 2005.
[36] J. Clifton and E. Laber, “Q-learning:理论与应用,” 年度统计学及其应用评论, vol. 7, no. 1, pp. 279-301, 2020.
[37] A. Kumar, A. Zhou, G. Tucker, and S. Levine, “离线强化学习的保守Q学习,” 神经信息处理系统进展, vol. 33, pp. 1179-1191, 2020.
[38] H. Van Hasselt, A. Guez, and D. Silver, “带双重Q学习的深度强化学习,” 在AAAI人工智能会议论文集, vol. 30, no. 1, 2016.
[39] A. M. Hafiz, “用于强化学习的深度Q网络综述:最新状态,” 智能通信技术与虚拟移动网络:ICICV 2022会议录, pp. 393-402, 2022.
[40] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “强化学习的功能近似下的策略梯度方法,” 神经信息处理系统进展, vol. 12, 1999.
[41] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton et al., “无需人类知识掌握围棋游戏,” 自然, vol. 550, no. 7676, pp. 354 − 359 , 2017 354-359,2017 354359,2017.
[42] H. Naveed, A. U. Khan, S. Qiu, M. Saqib, S. Anwar, M. Usman, N. Akhtar, N. Barnes, and A. Mian, “大型语言模型的全面概述,” arXiv预印本arXiv:2307.06435, 2023.
[43] Z. Lin, S. Basu, M. Beigi, V. Manjunatha, R. A. Rossi, Z. Wang, Y. Zhou, S. Balasubramanian, A. Zarei, K. Rezaei et al., “多模态基础模型的机制可解释性调查,” arXiv预印本arXiv:2502.17516, 2025.
[44] W. Wang, Z. Ma, Z. Wang, C. Wu, W. Chen, X. Li, and Y. Yuan, “医学中基于LLM的智能体调查:距离Baymax还有多远?” arXiv预印本arXiv:2502.11211, 2025.
[45] H. Ding, Y. Li, J. Wang, and H. Chen, “金融交易中的大语言模型智能体:综述,” arXiv预印本arXiv:2408.06361, 2024.
[46] Y. Li, H. Zhao, H. Jiang, Y. Pan, Z. Liu, Z. Wu, P. Shu, J. Tian, T. Yang, S. Xu et al., “制造业中的大语言模型,” arXiv预印本arXiv:2410.21418, 2024.
[47] C. I. Garcia, M. A. DiBattista, T. A. Letelier, H. D. Halloran, and J. A. Canello, “制造业中LLM应用的框架,” 制造快报, vol. 41, pp. 253-263, 2024.
[48] Z. Zhao, D. Tang, H. Zhu, Z. Zhang, K. Chen, C. Liu, and Y. Ji, “基于大语言模型的多智能体制造系统用于智能车间,” arXiv预印本arXiv:2405.16887, 2024.
[49] Anthropic, “介绍模型上下文协议,” https://www.anthropic.com/news/model-context-protocol, 2024, 访问日期: 2024-0410 .
[50] A. Singh, A. Ehtesham, S. Kumar, and T. T. Khoei, “模型上下文协议(MCP)调查:标准化上下文以增强大型语言模型(LLMs),” 2025.
[51] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, H. Küttler, M. Lewis, W.-t. Yih, T. Rocktäschel et al., “检索增强生成用于知识密集型NLP任务,” 神经信息处理系统进展, vol. 33, pp. 9459-9474, 2020.
[52] Y. Gao, Y. Xiong, X. Gao, K. Jia, J. Pan, Y. Bi, Y. Dai, J. Sun, H. Wang, and H. Wang, “检索增强生成用于大
语言模型:综述,” arXiv预印本arXiv:2312.10997, vol. 2, 2023.
[53] J. Maynez, S. Narayan, B. Bohnet, and R. McDonald, “关于抽象总结的忠实性和事实性,” arXiv预印本arXiv:2005.00661, 2020.
[54] Z. Ji, N. Lee, R. Frieske, T. Yu, D. Su, Y. Xu, E. Ishii, Y. J. Bang, A. Madotto, and P. Fung, “自然语言生成中的幻觉调查,” ACM计算调查, vol. 55, no. 12, pp. 1-38, 2023.
[55] H. Inan, K. Upasani, J. Chi, R. Rungta, K. Iyer, Y. Mao, M. Tontchev, Q. Hu, B. Fuller, D. Testuggine et al., “Llama Guard:基于LLM的人工智能对话输入输出保护,” arXiv预印本arXiv:2312.06674, 2023.
[56] Y. Dong, R. Mu, Y. Zhang, S. Sun, T. Zhang, C. Wu, G. Jin, Y. Qi, J. Hu, J. Meng et al., “保障大型语言模型:综述,” arXiv预印本arXiv:2406.02622, 2024.
[57] Y. Dong, R. Mu, G. Jin, Y. Qi, J. Hu, X. Zhao, J. Meng, W. Ruan, and X. Huang, “为大型语言模型构建护栏,” arXiv预印本arXiv:2402.01822, 2024.
[58] S. Abedù, A. Abdellatif, and E. Shihab, “基于LLM的聊天机器人用于挖掘软件仓库:挑战与机遇,” 在第28届国际软件工程评估与会议论文集上发表的文章, 2024, pp. 201-210.
[59] V. Kumar, P. Srivastava, A. Dwivedi, I. Budhiraja, D. Ghosh, V. Goyal, and R. Arora, “基于大型语言模型(LLM)的AI聊天机器人:架构、深入分析及其性能评估,” 在Springer出版的最近图像处理和模式识别国际会议上发表的文章, 2023, pp. 237-249.
[60] S. K. Dam, C. S. Hong, Y. Qiao, and C. Zhang, “关于基于LLM的AI聊天机器人的完整调查,” arXiv预印本arXiv:2406.16937, 2024.
[61] F. Sufi, “即时新闻:现代信息时代的AI聊天机器人.” AI, vol. 6, no. 2, 2025.
[62] R. Iyer, V. C. Maralapalle, P. Mahesh, and D. Patil, “生成式AI和LLM:电子商务案例研究,” 生成式AI和LLM:自然语言处理和生成对抗网络, p. 253, 2024.
[63] H. Jin, L. Huang, H. Cai, J. Yan, B. Li, and H. Chen, “从LLM到基于LLM的软件工程智能体:当前状况、挑战和未来展望的调查,” arXiv预印本arXiv:2408.02479, 2024.
[64] M. R. Lyu, B. Ray, A. Roychoudhury, S. H. Tan, and P. Thongtanunam, “自动编程:超越大型语言模型,” ACM软件工程与方法学汇刊, 2024.
[65] M. Hassanie和N. Moustafa, “大型语言模型(LLM)在网络安全防御中的全面概述:机遇与方向,” arXiv预印本arXiv:2405.14487, 2024.
[66] W. Kasri, Y. Himeur, H. A. Alkhazaleh, S. Tarapiah, S. Atalla, W. Mansoor, 和H. Al-Ahmad, “从漏洞到防御:大型语言模型在增强网络安全中的作用,” Computation, vol. 13, no. 2, p. 30, 2025.
[67] GitHub, “GitHub Copilot:您的AI配对程序员,” https://github.com/features/copilot.
[68] Cursor, “Cursor:AI驱动的代码编辑器,” https://www.cursor.com/en.
[69] Z. Chu, S. Wang, J. Xie, T. Zhu, Y. Yan, J. Ye, A. Zhong, X. Hu, J. Liang, P. S. Yu等, “教育领域的LLM智能体:进展与应用,” arXiv预印本arXiv:2503.11733, 2025.
[70] S. Sharma, P. Mittal, M. Kumar, 和V. Bhardwaj, “大型语言模型在个性化学习中的作用:教育影响的系统回顾,” Discover Sustainability, vol. 6, no. 1, pp. 124, 2025.
[71] S. Xu, X. Zhang, 和L. Qin, “Eduagent:学习中的生成式学生智能体,” arXiv预印本arXiv:2404.07963, 2024.
[72] H. Jin, M. Yoo, J. Park, Y. Lee, X. Wang, 和J. Kim, “Teachtune:针对多样化学生档案用模拟学生审查教学智能体,” arXiv预印本arXiv:2410.04078, 2024.
[73] C. E. Mowre 和H. Bou-Ammar, “Al-khwarizmï:用基础模型发现物理定律,” arXiv预印本arXiv:2502.01702, 2025.
[74] K. Yang, Y. Chu, T. Darwin, A. Han, H. Li, H. Wen, Y. CopurGencturk, J. Tang, 和H. Liu, “利用多智能体大型语言模型(LLM)进行内容知识识别,” 在人工智能教育国际会议上发表的文章。Springer, 2024, pp. 284-292.
[75] Y. Yan, S. Wang, J. Huo, P. S. Yu, X. Hu, 和Q. Wen, “Mathagent:利用混合数学智能体框架进行真实世界多模态数学错误检测,” arXiv预印本arXiv:2503.18132, 2025.
[76] Y. R. Wang, J. Duan, D. Fox, 和S. Srinivasa, “牛顿:大型语言模型是否能够进行物理推理?” arXiv预印本arXiv:2310.07018, 2023.
[77] A. M. Bran, S. Cox, O. Schilter, C. Baldassari, A. D. White, 和P. Schwaller, “用化学工具增强大型语言模型,” Nature Machine Intelligence, vol. 6, no. 5, pp. 525-535, 2024.
[78] S. Wang, H. Yuan, L. M. Ni, 和J. Guo, “Quantagent:通过自改进大型语言模型寻求交易的圣杯,” arXiv预印本arXiv:2402.03755, 2024.
[79] S. Wang, H. Yuan, L. Zhou, L. M. Ni, H.-Y. Shum, 和J. Guo, “AlphaGPT:人类-AI互动阿尔法挖掘用于量化投资,” arXiv预印本arXiv:2308.00016, 2023.
[80] W. Xu, J. Chen, P. Zheng, X. Yi, T. Tian, W. Zhu, Q. Wan, H. Wang, Y. Fan, Q. Su等, “部署基础模型驱动的智能体服务:综述,” arXiv预印本arXiv:2412.13437, 2024.
[81] E. Frantar, S. Ashkboos, T. Hoefler, 和D. Alistarh, “GPTQ:生成性预训练转换器的准确后训练量化,” arXiv预印本arXiv:2210.17323, 2022.
[82] J. Lin, J. Tang, H. Tang, S. Yang, W.-M. Chen, W.-C. Wang, G. Xiao, X. Dang, C. Gan, 和S. Han, “AWQ:设备上的激活感知权重量化用于LLM压缩和加速,” 机器学习与系统会议录, vol. 6, pp. 87-100, 2024.
[83] Z. Liu, B. Oguz, C. Zhao, E. Chang, P. Stock, Y. Mehdad, Y. Shi, R. Krishnamoorthi, 和V. Chandra, “LLM-QAT:无数据量化感知训练用于大型语言模型,” arXiv预印本arXiv:2305.17888, 2023.
[84] Z. Yao, R. Yazdani Aminabadi, M. Zhang, X. Wu, C. Li, 和Y. He, “ZeroQuant:高效且经济实惠的大规模变压器后训练量化,” 神经信息处理系统进展, vol. 35, pp. 27 168-27 183, 2022.
[85] G. Xiao, J. Lin, M. Seznec, H. Wu, J. Demouth, 和S. Han, “SmoothQuant:准确高效的大型语言模型后训练量化,” 在机器学习国际会议上发表的文章。PMLR, 2023, pp. 38 087-38 099.
[86] X. Ma, G. Fang, 和X. Wang, “LLM-Pruner:大型语言模型的结构修剪,” 神经信息处理系统进展, vol. 36, pp. 21 702-21 720, 2023.
[87] E. Frantar 和D. Alistarh, “SparseGPT:大规模语言模型可以一次性准确修剪,” 在机器学习国际会议上发表的文章。PMLR, 2023, pp. 10323-10337.
[88] M. Sun, Z. Liu, A. Bair, 和J. Z. Kolter, “一种简单有效的大型语言模型修剪方法,” arXiv预印本arXiv:2306.11695, 2023.
[89] I. Timiryasov 和J.-L. Tastet, “Baby Llama:从小型数据集训练的教师集合中进行知识蒸馏而无性能损失,” arXiv预印本arXiv:2308.02019, 2023.
[90] Y. Gu, L. Dong, F. Wei, 和M. Huang, “MiniLLM:大型语言模型的知识蒸馏,” arXiv预印本arXiv:2306.08543, 2023.
[91] C.-Y. Hsieh, C.-L. Li, C.-K. Yeh, H. Nakhost, Y. Fujii, A. Ratner, R. Krishna, C.-Y. Lee, 和T. Pfister, “逐步蒸馏!使用更少的训练数据和更小的模型尺寸超越更大的语言模型,” arXiv预印本arXiv:2305.02301, 2023.
[92] S. Lu, M. Wang, S. Liang, J. Lin, 和Z. Wang, “Transformer中的多头注意力和位置前馈硬件加速器,” 在2020年IEEE第33届片上系统国际会议(SOCC)上发表的文章。IEEE, 2020, pp. 84-89.
[93] H. Jang, J. Kim, J.-E. Jo, J. Lee, 和J. Kim, “MNNFast:内存增强神经网络的快速且可扩展系统架构,” 在第46届国际计算机体系结构研讨会论文集上发表的文章, 2019, pp. 250-263.
[94] Y. Bai, H. Zhou, K. Zhao, J. Chen, J. Yu, 和K. Wang, “TransformerOPU:基于FPGA的覆盖处理器用于Transformer网络,” 在2023年IEEE第31届年度现场可编程定制计算机器国际研讨会(FCCM)上发表的文章。IEEE, 2023, pp. 221-221.
[95] S. Zeng, J. Liu, G. Dai, X. Yang, T. Fu, H. Wang, W. Ma, H. Sun, S. Li, Z. Huang等, “FlightLLM:在FPGA上具有完整映射流的有效大型语言模型推理,” 在2024年ACM/SIGDA国际现场可编程门阵列研讨会上发表的文章, 2024, pp. 223-234.
[96] Y. Sheng, L. Zheng, B. Yuan, Z. Li, M. Ryabinin, B. Chen, P. Liang, C. Ré, I. Stoica, 和C. Zhang, “FlexGen:使用单个GPU的大型语言模型高吞吐量生成推理,” 在机器学习国际会议上发表的文章。PMLR, 2023, pp. 31 094-31 116.
[97] K. Alizadeh, S. I. Mirzadeh, D. Belenko, S. Khatamifard, M. Cho, C. C. Del Mundo, M. Rastegari, 和M. Farajtabar, “LLM in a Flash:有限内存下的有效大型语言模型推理,” 在计算语言学协会第62届年会论文集(长篇论文卷), 2024, pp. 12562-12584.
[98] W. Kwon, Z. Li, S. Zhuang, Y. Sheng, L. Zheng, C. H. Yu, J. Gonzalez, H. Zhang, 和I. Stoica, “PagedAttention下大型语言模型服务的有效内存管理,” 在操作系统原理研讨会第29届研讨会上发表的文章, 2023, pp. 611-626.
[99] O. Shorinwa, Z. Mei, J. Lidard, A. Z. Ren, 和A. Majumdar, “大型语言模型不确定性量化调查:分类、开放研究挑战和未来方向,” arXiv预印本arXiv:2412.05563, 2024.
[100] L. Huang, W. Yu, W. Ma, W. Zhong, Z. Feng, H. Wang, Q. Chen, W. Peng, X. Feng, B. Qin等, “大型语言模型幻觉调查:原则、分类、挑战和开放问题,” ACM信息系统汇刊, vol. 43, no. 2, pp. 1-55, 2025.
[101] Z. Chen, J. Li, P. Chen, Z. Li, K. Sun, Y. Luo, Q. Mao, D. Yang, H. Sun, 和P. S. Yu, “利用多个大型语言模型:LLM集成调查,” arXiv预印本arXiv:2502.18036, 2025.
[102] N. Naik, “概率共识通过集成验证:LLM可靠性的框架,” arXiv预印本arXiv:2411.06535, 2024.
[103] H. Yang, M. Li, H. Zhou, Y. Xiao, Q. Fang, 和R. Zhang, “一个LLM还不够:利用集成学习的力量进行医学问答,” medRxiv, 2023.
[104] Z. Shen, “带有工具的LLM:调查,” arXiv预印本arXiv:2409.18807, 2024.
[105] S. Kapoor, B. Stroebl, Z. S. Siegel, N. Nadgir, 和A. Narayanan, “重要的AI智能体,” arXiv预印本arXiv:2407.01502, 2024.
[106] Y. Wu, X. Tang, T. M. Mitchell, 和Y. Li, “SmartPlay:作为智能体的LLM基准,” arXiv预印本arXiv:2310.01557, 2023.
[107] G. Mialon, C. Fourrier, T. Wolf, Y. LeCun, 和T. Scialom, “Gaia:通用AI助手的基准,” 在第十二届国际学习表示会议, 2023.
[108] J. Y. Koh, R. Lo, L. Jang, V. Duvvur, M. C. Lim, P.-Y. Huang, G. Neubig, S. Zhou, R. Salakhutdinov, 和D. Fried, “VisualWebArena:在现实视觉网络任务中评估多模态智能体,” arXiv预印本arXiv:2401.13649, 2024.
[109] X. H. Lü, Z. Kasner, 和S. Reddy, “Weblinx:多回合对话的真实世界网站导航,” arXiv预印本arXiv:2402.05930, 2024.
[110] J. Xie, K. Zhang, J. Chen, T. Zhu, R. Lou, Y. Tian, Y. Xiao, 和Y. Su, “TravelPlanner:语言智能体在真实世界规划中的基准,” arXiv预印本arXiv:2402.01622, 2024.
[111] A. Yan, Z. Yang, W. Zhu, K. Lin, L. Li, J. Wang, J. Yang, Y. Zhong, J. McAuley, J. Gao等, “GPT-4V在仙境中:零样本智能手机GUI导航的大型多模态模型,” arXiv预印本arXiv:2311.07562, 2023.
[112] L. Geng 和E. Y. Chang, “Realm-Bench:LLM和多智能体系统的现实世界规划基准,” arXiv预印本arXiv:2502.18836, 2025.
[113] X. Gu, X. Zheng, T. Pang, C. Du, Q. Liu, Y. Wang, J. Jiang, 和M. Lin, “Agent Smith:一张图像能以指数速度破解一百万个多模态LLM智能体,” arXiv预印本arXiv:2402.08567, 2024.
[114] Y. Dong, Z. Li, X. Meng, N. Yu, 和S. Guo, “用LLM智能体破解文本到图像模型,” arXiv预印本arXiv:2408.00523, 2024.
[115] F. Liu, Y. Feng, Z. Xu, L. Su, X. Ma, D. Yin, 和H. Liu, “JailJudge:一个全面的越狱判断基准,带有多智能体增强解释评估框架,” arXiv预印本arXiv:2410.12855, 2024.
[116] F. He, T. Zhu, D. Ye, B. Liu, W. Zhou, 和P. S. Yu, “LLM智能体出现的安全和隐私问题:案例研究调查,” arXiv预印本arXiv:2407.19354, 2024.
[117] A. Kumar, C. Agarwal, S. Srinivas, A. J. Li, S. Feizi, 和H. Lakkaraju, “认证LLM对对抗性提示的安全性,” arXiv预印本arXiv:2309.02705, 2023.
[118] S. Xhonneux, A. Sordoni, S. Günnemann, G. Gidel, 和L. Schwinn, “LLM中有效的对抗性训练与连续攻击,” arXiv预印本arXiv:2405.15589, 2024.
[119] R. Behnia, M. R. Ebrahimi, J. Pacheco, 和B. Padmanabhan, “EWTune:一个通过差分隐私私密微调大型语言模型的框架,” 在2022 IEEE国际数据挖掘研讨会(ICDMW)上发表的文章, IEEE, 2022, pp. 560-566.
[120] T. Singh, H. Aditya, V. K. Madisetti, 和A. Bahga, “低语微调:通过差分隐私在微调LLM中保护数据隐私,” 软件工程与应用期刊, vol. 17, no. 1, pp. 1-22, 2024.
[121] M. Franco, O. Gaggi, 和C. E. Palazzi, “将内容审核系统与大型语言模型集成,” ACM Web事务汇刊, 2024.
[122] U. Kulsum, H. Zhu, B. Xu, 和M. d’Amorim, “LLM在自动化漏洞修复中的案例研究:评估推理和补丁验证反馈的影响,” 在第一届ACM国际AI-Powered Software会议上发表的文章, 2024, pp. 103-111.

参考论文:https://arxiv.org/pdf/2505.16120

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Paper易论

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值