A sequence of number is called arithmetic if it consists of at least three elements and if the difference between any two consecutive elements is the same.
For example, these are arithmetic sequence:
1, 3, 5, 7, 9 7, 7, 7, 7 3, -1, -5, -9
The following sequence is not arithmetic.
1, 1, 2, 5, 7
A zero-indexed array A consisting of N numbers is given. A slice of that array is any pair of integers (P, Q) such that 0 <= P < Q < N.
A slice (P, Q) of array A is called arithmetic if the sequence:
A[P], A[p + 1], ..., A[Q - 1], A[Q] is arithmetic. In particular, this means that P + 1 < Q.
The function should return the number of arithmetic slices in the array A.
思路:利用head和tail两个位置“指针”指示等差的一段区间,一段等差区间可构成的全部等差区间可根据其size获得(边界的细节需要注意推敲)代码1:
class Solution {
public:
bool isArithmetic(vector<int>& A){
int dif=A[0]-A[1];
for(int i=2;i<A.size();i++){
if(dif!=(A[i-1]-A[i])){return false;}
}
return true;
}
int numberOfArithmeticSlices(vector<int>& A) {
if(A.size()<3) {return 0;}
int count=0,head=0,tail;
for(;head<A.size()-2;head++){
for(tail=head+3;tail<=A.size();tail++){
vector<int> temp(A.begin()+head,A.begin()+tail);
if(isArithmetic(temp)){count++;}
else{break;}
}
}
return count;
}
};
代码2:
class Solution {
public:
int numberOfArithmeticSlices(vector<int>& A) {
if(A.size()<3){return 0;}
int head=0,tail,dif=A[1]-A[0],res=0;
for(int i=1;i<A.size();i++){
if(A[i]-A[i-1]!=dif){
tail=i-1;
if(tail-head>=2){res += ((1+(tail-head+1-2))*(tail-head+1-2)/2);}
head=i-1;
dif=A[i]-A[i-1];
}
}
tail=A.size()-1;
if(tail-head>=2){res += ((1+(tail-head+1-2))*(tail-head+1-2)/2);}
return res;
}
};
代码3:
class Solution {
public:
int numberOfArithmeticSlices(vector<int>& A) {
int n = A.size();
if (n < 3) return 0;
vector<int> dp(n, 0); // dp[i] means the number of arithmetic slices ending with A[i]
if (A[2]-A[1] == A[1]-A[0]) dp[2] = 1; // if the first three numbers are arithmetic or not
int result = dp[2];
for (int i = 3; i < n; ++i) {
// if A[i-2], A[i-1], A[i] are arithmetic, then the number of arithmetic slices ending with A[i] (dp[i])
// equals to:
// the number of arithmetic slices ending with A[i-1] (dp[i-1], all these arithmetic slices appending A[i] are also arithmetic)
// +
// A[i-2], A[i-1], A[i] (a brand new arithmetic slice)
// it is how dp[i] = dp[i-1] + 1 comes
if (A[i]-A[i-1] == A[i-1]-A[i-2])
dp[i] = dp[i-1] + 1;
result += dp[i]; // accumulate all valid slices
}
return result;
}
};
(动态规划算法)