413. Arithmetic Slices

A sequence of number is called arithmetic if it consists of at least three elements and if the difference between any two consecutive elements is the same.

For example, these are arithmetic sequence:

1, 3, 5, 7, 9
7, 7, 7, 7
3, -1, -5, -9

The following sequence is not arithmetic.

1, 1, 2, 5, 7

A zero-indexed array A consisting of N numbers is given. A slice of that array is any pair of integers (P, Q) such that 0 <= P < Q < N.

A slice (P, Q) of array A is called arithmetic if the sequence:
A[P], A[p + 1], ..., A[Q - 1], A[Q] is arithmetic. In particular, this means that P + 1 < Q.

The function should return the number of arithmetic slices in the array A.

思路:利用head和tail两个位置“指针”指示等差的一段区间,一段等差区间可构成的全部等差区间可根据其size获得(边界的细节需要注意推敲)

代码1:

class Solution {
public:
    bool isArithmetic(vector<int>& A){
        int dif=A[0]-A[1];
        for(int i=2;i<A.size();i++){
            if(dif!=(A[i-1]-A[i])){return false;}
        }
        return true;
    }
    
    int numberOfArithmeticSlices(vector<int>& A) {
        if(A.size()<3) {return 0;}
        int count=0,head=0,tail;
        for(;head<A.size()-2;head++){
            for(tail=head+3;tail<=A.size();tail++){
                vector<int> temp(A.begin()+head,A.begin()+tail);
                if(isArithmetic(temp)){count++;}
                else{break;}
            }
        }
        return count;
    }
};
代码2:
class Solution {
public:
    int numberOfArithmeticSlices(vector<int>& A) {
        if(A.size()<3){return 0;}
        int head=0,tail,dif=A[1]-A[0],res=0;
        for(int i=1;i<A.size();i++){
            if(A[i]-A[i-1]!=dif){
                tail=i-1;
                if(tail-head>=2){res += ((1+(tail-head+1-2))*(tail-head+1-2)/2);}
                head=i-1;
                dif=A[i]-A[i-1];
            }
        }
        tail=A.size()-1;
        if(tail-head>=2){res += ((1+(tail-head+1-2))*(tail-head+1-2)/2);}
        return res;
    }
};
代码3:
class Solution {
public:
    int numberOfArithmeticSlices(vector<int>& A) {
        int n = A.size();
        if (n < 3) return 0;
        vector<int> dp(n, 0); // dp[i] means the number of arithmetic slices ending with A[i]
        if (A[2]-A[1] == A[1]-A[0]) dp[2] = 1; // if the first three numbers are arithmetic or not
        int result = dp[2];
        for (int i = 3; i < n; ++i) {
            // if A[i-2], A[i-1], A[i] are arithmetic, then the number of arithmetic slices ending with A[i] (dp[i])
            // equals to:
            //      the number of arithmetic slices ending with A[i-1] (dp[i-1], all these arithmetic slices appending A[i] are also arithmetic)
            //      +
            //      A[i-2], A[i-1], A[i] (a brand new arithmetic slice)
            // it is how dp[i] = dp[i-1] + 1 comes
            if (A[i]-A[i-1] == A[i-1]-A[i-2]) 
                dp[i] = dp[i-1] + 1;
            result += dp[i]; // accumulate all valid slices
        }
        return result;
    }
};
(动态规划算法)


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值