math
文章平均质量分 84
Herbie_bhe
这个作者很懒,什么都没留下…
展开
-
矩阵代数总览
#to do list这是一个关于矩阵与线性代数的笔记博客纲要0. 序言讲述并列的几种数学思维函数与变换 矩阵与变换 不确定的统计概率观点 优化统筹学 ,程序员眼中的数学 块运算,机器学习运用广泛 参考《线性代数的几何解释》1. 矩阵与变换 矩阵 --如何理解矩阵?为什么会有矩阵代数?为什么如此定义 标量 向量 矩阵 张量 vs 实数函数 多元函数 多值函数 函数变...原创 2019-01-06 15:31:41 · 356 阅读 · 1 评论 -
1.1矩阵——如何理解矩阵
矩阵——如何理解矩阵标签: 数学 线性代数 矩阵!请尊重作者的辛苦,转载请注明出处!初学矩阵与线性代数,我们都会感觉有硬生生的定义一个矩阵和行列式的运算接着便是一堆的特征向量之类的数学证明与技巧,一时间头昏脑涨,感觉数学就是自己强行造出和定义一些莫名其妙的跪着然后我们稀里糊涂的在规则被要求证明和计算,完全丧失了数学的意义和兴趣。故写此文,让大家更好理解矩阵与线性代数其实数学的发展是抽象...原创 2019-01-06 23:18:26 · 2904 阅读 · 0 评论 -
高斯过程和机器学习2——高斯分类
高斯过程分类对于分类问题,高斯过程就不那么简单。前面我们是可以得出似然函数,先验分布均为高斯得出后验也是高斯分布。这种在解析计算上有良好的驯良性。对于分类问题输出值y不是连续的而是离散的,自然p(y|D)不能用高斯分布,比如二分类问题y=0,1就服从伯努利分布。(这里是否可以考虑中间输出y’的先验分布为两个高斯分布的叠加,一个均值为1一个为0,类似于核密度估计然后再用sigmod函数映射为离散值...原创 2019-01-11 22:51:41 · 8426 阅读 · 4 评论 -
2.1 行列式与秩
矩阵量 -行列式从这节开始,按照数理统计里的统计量,我们也定义一个矩阵量的东西来衡量一个矩阵或者一个空间变换的特征,也就是一个**“度量”这种度量显然是不充分完备**的,因为只有一个数嘛,就如同期望 方差 几阶矩一样不能完全表征原数据,因为原数据或者原矩阵就包含了最大的信息。但是也能表征一定的信息行列式 是什么?行列式的运算定义比较复杂,很难直观理解,一般这种定义来源于以下几种方式:排...原创 2019-01-07 22:35:45 · 2230 阅读 · 0 评论 -
1.2 矩阵运算和变换
矩阵运算和变换标签:矩阵运算 如何理解矩阵乘法 如何理解矩阵除法 矩阵的逆_ 写的辛苦 转载请注明出处!矩阵乘法===如何理解矩阵乘法从实数函数来看我们再来类比一下:实数函数:y=ax+by=ax+by=ax+b矩阵变换:Y=Ax⃗+BY=A\vec{x}+BY=Ax+B在实数函数视角下,实数a即表示静态的一个数,在参与运算后就表征动态的一个线性的缩放因子,b也本是一个...原创 2019-01-07 17:31:33 · 2480 阅读 · 0 评论 -
高斯过程和机器学习
overview for gauss process for machine learningthe doc and matlab tool see in:http://www.gaussianprocess.org/gpml/prml:chapter relevent with GPa flexible and efficient gauss processbayes optimiz...原创 2019-01-08 22:21:51 · 562 阅读 · 0 评论 -
高斯过程和机器学习1——高斯回归
introduction监督学习一般有两种处理,一种是根据经验特点严格限制为莫一种模型和函数,比如用线性回归模型处理;另外一种就是更宽泛:给每一种函数模型一个先验概率,概率越大意味着越容易被我们采纳,意味它具有某种更好的性质,比如更为光滑(可以参考核密度估计的由来)。后者麻烦在函数模型是个无限集,如何处理?我们便推出一种【高斯过程】:是高斯分布的广义泛化。【随机过程】宽泛的解释是把函数值视为一个...原创 2019-01-09 21:55:15 · 10367 阅读 · 1 评论 -
2.2 范数 迹
矩阵向量范数我们说行列式是对矩阵变换的整体一个度量,比如他等于特征值的乘积(特征空间的体积)等等性质都能表明他确实是一个度量。我们还需要其他的度量诸如矩阵非方阵时,这种整体“大小”的度量有利于描述扰动的大小和灵敏度的分析参见《数值分析》。也有利于在优化和机器学习中起到正则化约束的作用,可以看作是矩阵或者向量距离的测度,这就是【范数】用记号||.||表示范数。向量范数自然,我们会想到怎样定义...原创 2019-01-15 20:31:55 · 6069 阅读 · 1 评论