Polars 是一个 Python 库,以闪电般的速度处理海量数据集,在性能和内存管理方面超越了 pandas。
在数据科学领域,Python 因其多功能性和丰富的库生态系统而占据主导地位。从使用 pandas 进行数据操作到使用 NumPy 进行数值计算,Python 使我们能够应对各种分析挑战。但随着数据集的规模和复杂性不断膨胀,对高性能解决方案的需求也在增加。这就是 Polars 挺身而出的地方。
Polars 是一个革命性的开源 Python 库,专为闪电般的数据操作和分析而设计。Polars 以性能为核心,为熊猫等传统图书馆提供了一个引人注目的替代方案,尤其是在处理突破内存边界的海量数据集时。
为什么选择 Polars?
以下是 Polars 脱颖而出的原因:
- 炽热的速度:Polars 用 Rust 编写,利用多线程查询引擎实现高效的并行处理。与基于 Python 的库相比,这意味着显着的性能提升。
- 大数据友好:Polars 可无缝处理超出可用 RAM 的数据集。其惰性评估方法构建了操作的计算图,在执行之前优化查询,并实现对内存不足数据的高效处理。
- 直观的 API:Polars 拥有熟悉的 DataFrame 界面,让 pandas 用户轻松过渡。其富有表现力的语法允许清晰简洁的数据操作,提高代码的可读性。
- 无缝集成:Polars 与 NumPy 和 PyArrow 等流行的 Python 数据科学库顺利集成。这促进了有凝聚力的工作流程,并扩大了您可以使用的工具范围。
与熊猫相比的优势和相似之处
虽然 Polars 和 pandas 都擅长数据处理,但它们迎合了不同的需求。以下是它们的优点和相似之处的细分:
Polars 的优势
- 卓越的速度:对于海量数据集,Polars 的延迟评估和列式处理可显著提高性能。
- 大数据友好:Polars 可高效处理内存不足数据,是大数据分析的理想选择。
熊猫的优势
- 成熟的生态系统:Pandas 拥有庞大的库和扩展生态系统,提供更广泛的功能。
- 社区和资源:Pandas 拥有更大的用户群和更广泛的文档