Binary Tree Traversals

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4205    Accepted Submission(s): 1904

Problem Description
A binary tree is a finite set of vertices that is either empty or consists of a root r and two disjoint binary trees called the left and right subtrees. There are three most important ways in which the vertices of a binary tree can be systematically traversed or ordered. They are preorder, inorder and postorder. Let T be a binary tree with root r and subtrees T1,T2.

In a preorder traversal of the vertices of T, we visit the root r followed by visiting the vertices of T1 in preorder, then the vertices of T2 in preorder.

In an inorder traversal of the vertices of T, we visit the vertices of T1 in inorder, then the root r, followed by the vertices of T2 in inorder.

In a postorder traversal of the vertices of T, we visit the vertices of T1 in postorder, then the vertices of T2 in postorder and finally we visit r.

Now you are given the preorder sequence and inorder sequence of a certain binary tree. Try to find out its postorder sequence.

Input
The input contains several test cases. The first line of each test case contains a single integer n (1<=n<=1000), the number of vertices of the binary tree. Followed by two lines, respectively indicating the preorder sequence and inorder sequence. You can assume they are always correspond to a exclusive binary tree.

Output
For each test case print a single line specifying the corresponding postorder sequence.

Sample Input
9 1 2 4 7 3 5 8 9 6 4 7 2 1 8 5 9 3 6

Sample Output
7 4 2 8 9 5 6 3 1

#include <cstdio>
#include <algorithm>
using namespace std;

struct tree
{
struct tree* l;
struct tree* r;
int val;
tree()
{
l=NULL;
r=NULL;
}
};

int pre[1010],in[1010];
int n;
tree* root;
void build(int num,int l,int r,tree *rt)//pre num   in_l  in_r
{
int flag=-1;
while(flag==-1)
{
for(int i=l;i<=r;i++)
{
if(pre[num]==in[i])
flag=i;
}
if(flag==-1)
num++;
}
if(flag-l>0)
{
rt->l=(tree*)malloc(sizeof(tree));
*(rt->l)=tree();
build(num+1,l,flag-1,rt->l);
}
if(r-flag>0)
{
rt->r=(tree*)malloc(sizeof(tree));
*(rt->r)=tree();
build(num+1,flag+1,r,rt->r);
}
rt->val=pre[num];
}

void post(tree* nw)
{
if(nw->l!=NULL)
post(nw->l);
if(nw->r!=NULL)
post(nw->r);

if(nw==root)
printf("%d",nw->val);
else
printf("%d ",nw->val);

}

void del(tree* nw)
{
if(nw->l!=NULL)
del(nw->l);
if(nw->r!=NULL)
del(nw->r);
free(nw);
}

int main()
{
while(scanf("%d",&n)!=EOF)
{
for(int i=0;i<n;i++)
scanf("%d",&pre[i]);
for(int i=0;i<n;i++)
scanf("%d",&in[i]);
root=(tree*)malloc(sizeof(tree));
*root=tree();
build(0,0,n-1,root);
post(root);
puts("");
del(root);
}
return 0;
} 

hdu1710 Binary Tree Traversals ----- 二叉树前序中序推后序

2016-05-28 22:31:24

已知中序和前序（或后序）遍历结果生成树

2016-08-10 09:14:55

二叉树 由中序遍历和前序遍历推后序遍历

2017-02-06 11:17:33

前序，中序写出后向遍历，中序，后序写前序

2016-06-10 16:22:47

二叉树前序、中序、后序遍历的相互求法

2016-03-30 02:45:29

第六章 遍历二叉树及推导遍历结果(前序、中序和后续)

2017-04-20 13:53:01

阿里笔试-二叉树由前序遍历和中序遍历推导后序遍历

2016-07-28 01:56:50

Python练手之根据前序和中序&根据中序和后序重建二叉树，输出前序、中序和后序遍历结果

2011-04-11 17:40:00

数据结构之线索二叉树的前序,中序和后序遍历

2016-10-09 19:24:15

二叉树的前序、中序、后序三种遍历的六种实现方式（递归、非递归）（C++）

2016-09-14 15:26:50