HDU 4794 Arnold ACM/ICPC 2013 Changsha(二次剩余+数论)
看了这么久,居然不是找规律的题目……
大致题意是给你一个N*N的矩阵,然后告诉你阿诺德变换,即原来坐标为(x,y)的点变换一次后变成((x+y)%N,(x+2y)%N)。然后告诉你阿诺德变换一定能够通过有限次变换之后变换回原本的矩阵,然后让你求这个周期。
我们用(x,y)的形式表示每一个坐标,写出经过阿诺德变换之后的坐标。我们发现,对于坐标(x,y),经过有阿诺德变换之后,在模n的剩余系下可以写成(fib(n)x+fib(n+1)y,fib(n+1)x+fib(n+2)y)的
原创
2017-09-22 08:50:04 ·
972 阅读 ·
0 评论