题目链接:
http://poj.org/problem?id=1001
大致题意:
转自:
http://blog.csdn.net/alongela/article/details/6788237
好久没做关于大整数的题了,有点恐惧感,这题一直没尝试,感觉又要大整数又要小数点的有点麻烦,而且答案还要去掉前导0和后导0。
其实看了一下题,输入比较规范,前6位是第一个数A,后面是该数的多少次方N,大整数的乘法可以模拟笔算乘法来做。此题第一步就是处理输入的数A中的小数点,先把小数点去掉,把原来的数存储在一个整型数组中,记录小数点的位置,然后再开一个整型数组存储中间结果。接下来比较简单,设数组1和数组2一开始存储A,数组3是中间数组,每次由数组3来保存数组1和数组2的相乘结果,然后把数组3复制到数组1,由于N最大只是25,因此这种方法还是可以的。得出结果后就是计算小数点的位置,这个由原来的位置乘以N就可以了,不过要注意运算过程数组刚好是反向的,因此也要小小的处理一下。确定小数点的位置之后还要去掉前导0和后导0,这个可以通过确定起始位和终止位来输出数组1中保存的结果,POJ的讨论里面有一些测试数据,有一些比较绝,对发现错误很有帮助,比如10.000 1这个输入的输出应该为10。
#include <iostream>
using namespace std;
const int maxn = 999999;
char s[7], n;
int lena, lenb;
int a[maxn], b[maxn], res[maxn];
void mul()
{
memset(res, 0, sizeof(res));
int i, j;
for (i = 1; i <= lena; ++i)
for (j = 1; j <= lenb; ++j)
{
res[i + j - 1] += a[i] * b[j];
if (res[i + j - 1] > 9)
{
res[i + j] += res[i + j - 1] / 10;
res[i + j - 1] %= 10;
}
}
lena += lenb;
memcpy(a + 1, res + 1, lena * sizeof(int));
}
int main()
{
while (scanf("%s %d", s, &n) == 2)
{
int i, j, dot = -1;
for (i = 5, j = 1; i >= 0; --i)
{
if (s[i] != '.')
a[j] = b[j++] = s[i] - '0';
else
dot = i;
}
if (dot == -1)
lena = lenb = 6;
else
lena = lenb = 5;
for (i = 1; i < n; ++i)
mul();
if (dot == -1)
{
int start = 1;
while (!s[start])
++start;
for (i = start; i <= lena; ++i)
cout<<a[i];
cout<<endl;
}
else
{
dot = 5 - dot;
dot *= n;
int down, up;
for (i = 1; i <= lena; ++i)
if (a[i])
{
down = i;
break;
}
for (i = lena; i >= 1; --i)
if (a[i])
{
up = i;
break;
}
if (up < dot)
up = dot;
if (down > dot)
down = dot + 1;
for (; up >= down; --up)
{
if (up == dot)
cout<<'.';
cout<<a[up];
}
cout<<endl;
}
}
return 0;
}