演化计算
文章平均质量分 78
群智能,组合优化,进化算法,
武科大许志伟
武汉科技大学计算机科学与技术学院青年老师,课题组中文官方网站:https://jaywayxu.github.io/zh-cn/
展开
-
连续邮资问题-分支限界法求解
在连续邮资问题中,给定了nnn种不同面值的邮票,每个信封至多贴mmm张邮票。我们的目标是设计一个邮票面值集合,使得从面值111开始,能够连续支付的邮资区间尽可能大。输入条件n5n = 5n5:邮票种类数为 5。m4m = 4m4:每个信封最多可以贴 4 张邮票。目标在给定邮票面值的设计下,从111开始,所有整数邮资都能用邮票贴出,且所能覆盖的连续区间最大。问题示例设计1:邮票面值为1311153213111532。解释使用最多4。原创 2024-11-04 13:15:42 · 536 阅读 · 0 评论 -
TSP问题-分支限界法求解
给定一个城市集合Cc1c2cnCc1c2cn,任何两个城市之间都有距离dcicjdcjci∈Z1≤ij≤ndcicjdcjci∈Z1≤ij≤n。找到一个城市的排列,使得从一个城市出发,访问每个城市恰好一次,并返回出发城市,总路径长度最短。当前已找到的最短巡回路线的长度。假设顶点cic_ici出发的最短边为lil_ilidjd_jdj。原创 2024-11-01 14:55:32 · 627 阅读 · 0 评论 -
最大团问题-分支限界法求解
在一个无向图GVEG = (V, E)GVE中,团(Clique)是一个完全子图,即该子图中的任意两个顶点之间都有边。最大团(Maximum Clique)是所有团中包含顶点数最多的团,最大团问题即是寻找无向图中包含最多顶点的完全子图。数学表述:给定无向图GVEG = (V, E)GVE,其中VVV是顶点集,EEE是边集。找到一个最大子集V′⊆VV′⊆V使得V′V'V′中任意两个顶点之间都有边,即V′V'V′形成一个完全子图。原创 2024-10-30 11:36:32 · 699 阅读 · 0 评论 -
背包问题-分支限界法求解
是一个。原创 2024-10-28 12:01:10 · 896 阅读 · 0 评论 -
回溯法解决图着色问题
此为课题组所指导本科生和低年级硕士生学习组合优化问题汇报所用教材:北京大学屈婉玲教授《算法设计与分析》课程资料:https://www.icourse163.org/course/PKU-1002525003承诺不用于任何商业用途,仅用于学术交流和分享。原创 2024-10-27 13:43:36 · 734 阅读 · 0 评论 -
回溯法求解简单组合优化问题
排列树是一种表示所有。原创 2024-10-23 12:56:20 · 806 阅读 · 0 评论 -
以简单组合优化为例讨论计算复杂性
该模型的目标是在机器 1 的加工时间尽量大的前提下,不超过给定的阈值DDD,剩余的任务则分配到机器 2。通过这个建模方法,任务被合理分配,以实现优化目标。原创 2024-10-20 13:29:48 · 663 阅读 · 0 评论 -
从组合优化问题建模到贪心法求解以简单调度为例
此为课题组所指导本科生和低年级硕士生学习组合优化问题汇报所用教材:北京大学屈婉玲教授《算法设计与分析》课程资料:https://www.icourse163.org/course/PKU-1002525003承诺不用于任何商业用途,仅用于学术交流和分享。原创 2024-10-18 12:31:53 · 674 阅读 · 0 评论 -
基于MOA*的多目标路径规划问题之我见
MinimizeFxf1xf2x⋅⋅⋅fmxMinimizeFxf1xf2x,⋅⋅⋅,fmx)}xx1x2xn∈Ωxx1x2...xn∈Ω,其中Ω{\Omega}Ω表示搜索空间,m 是目标的数量,x 是由 n 个决策变量xi{x_i}xi组成的决策向量。一个解xa{x_a}xa被认为 Pareto 支配另一个解xb{x_b}xb。原创 2024-10-06 15:53:02 · 847 阅读 · 0 评论 -
关于差分进化算法(Differential Evolution)
差分进化算法最具有特色的是它的自适应变异操作,在演化的初期阶段,因为种群中个体的差异较大,因此用来作为变异扰动的差向量也较大,个体的扰动就较大,有利于算法的全局搜索;随着演化的进行,当算法趋于收敛的时候,种群中个体的差异随之较小,因此用来变异扰动的差向量也随之自适应地变小,较小的扰动有利于局部搜索。正是由于这种简单又独具特色的变异操作有效地平衡了差分演化算法的全局搜索能力和局部搜索能力。原创 2022-11-14 16:12:57 · 4745 阅读 · 1 评论 -
从PlatEMO中提取真实PF前沿
从PlatEMO中提取真实PF前沿觉得有用的话,欢迎一起讨论相互学习~众所周知,我是Jmetal的重度爱好者,最近实验遇到一些难以解决的困难,当我在进行超多目标优化实验即MaOP时,需要M=10及以上的PF,然而在benchmark中没有提供,而且Jmetal不支持通过均匀取点的方式生成PF。因此,经过老师的指导,我们选择使用在PlatEMO中运行完相应目标数量的benchmark problem后,将通过均匀踩点得到的真实PF提取出来作为在Jmetal上进行实验的真实PF.观察platEMO中原创 2022-05-12 11:54:59 · 1939 阅读 · 0 评论 -
【CMOP】 benchmark 目标函数数量和决策变量数量可变性
CMOP benchmark 目标函数数量和决策变量数量可变性觉得有用的话,欢迎一起讨论相互学习~benchmark Name目标可变决策变量个数可变CF不可变不可变DAS-CMOP不可变可变DOC不可变不可变C-DTLZ可变可变DC-DTLZ可变可变FCP不可变可变LIR-CMOP不可变可变MW不可变可变RW不可变不可变...原创 2022-04-09 16:12:44 · 666 阅读 · 0 评论 -
【PlatEMO】 V34 改版更换文件
PlatEMO V34 改版更换文件觉得有用的话,欢迎一起讨论相互学习~目前platEMO的版本是V34,对于原来的一些文件和代码需要进行一些修改才能在最新的平台上使用对于种群大小,原来是Global.N, 现在是Problem.N对于问题的目标数量,原来是Global.M,现在是Problem.M对于算法迭代,原来的控制语句是 while Algorithm.NotTermination() 现在是 while Algorithm.NotTerminated对于种群的初始化,原初始化语句原创 2022-04-07 22:44:29 · 783 阅读 · 0 评论 -
【PlatEMO】 debug fail to save the table, please refer to the command window for detail
PlatEMO debug fail to save the table, please refer to the command window for detail觉得有用的话,欢迎一起讨论相互学习~问题最近在使用PlatEMO的实验模块时,当所有实验run完,想要保存表格时,弹出解决方法因为此时我已经打开了WPS,这时候生成的文件会自动在WPS中打开,使得写文件的操作无效,因此此时关闭当前打开的WPS就可以继续保存了~ 非常的香鸭 !!!...原创 2022-04-02 14:15:16 · 505 阅读 · 0 评论 -
PlatEMO matlab 使用帮助文档
PlatEMO matlab 使用帮助文档觉得有用的话,欢迎一起讨论相互学习~作为一名java(Jmetal?)python (Tensorflow?) 重度爱好者,当我使用Matlab的时候我常常找不到北有时候你是不是会遇见在matlab使用帮助命令缺找不到想要的答案,例如我今天就是这样,我想要查找这个UniformPoint函数使用命令行doc UniformPoint这是因为没有把项目的路径加入到matlab中,例如此处我使用的是platEMO将其添加到matlab路径的方法也十分简原创 2022-03-31 23:00:12 · 2066 阅读 · 1 评论 -
【论文研读】-用于约束多目标优化的新型双阶段双种群进化算法补充材料
论文研读-用于约束多目标优化的新型双阶段双种群进化算法补充材料A Novel Dual-Stage Dual-Population Evolutionary Algorithm for Constrained Multi-Objective Optimization觉得有用的话,欢迎一起讨论相互学习~最近我在学习约束多目标问题的论文,其中由明博士和张教授发表在TEVC上的DD-CMOEA非常不错~原文链接此篇文章为 M. Ming, R. Wang, H. Ishibuchi and T. Z原创 2022-03-30 17:35:43 · 1999 阅读 · 3 评论 -
【论文研读】-用于约束多目标优化的新型双阶段双种群进化算法
论文研读-用于约束多目标优化的新型双阶段双种群进化算法A Novel Dual-Stage Dual-Population Evolutionary Algorithm for Constrained Multi-Objective Optimization觉得有用的话,欢迎一起讨论相互学习~最近我在学习约束多目标问题的论文,其中由明博士和张教授发表在TEVC上的DD-CMOEA非常不错~原文链接此篇文章为 M. Ming, R. Wang, H. Ishibuchi and T. Zhang原创 2022-03-30 17:34:46 · 9517 阅读 · 1 评论 -
【论文研读】-基于对偶种群的约束多目标优化进化算法-补充材料
基于对偶种群的约束多目标优化进化算法-补充材料Supplementary File of “A Dual-Population based Evolutionary Algorithm for Constrained Multi-Objective Optimization觉得有用的话,欢迎一起讨论相互学习~最近我在学习约束多目标问题的论文,其中由明博士和张教授发表在TEVC上的c-DPEA非常不错~这是正文的补充材料,之所以也想进行研读,是因为其中的有些实验内容能给我们带来一些思考,并能看到C原创 2022-03-29 18:16:08 · 1077 阅读 · 0 评论 -
【论文研读】基于对偶种群的约束多目标优化进化算法
基于对偶种群的约束多目标优化进化算法A Dual-Population-Based Evolutionary Algorithm for Constrained Multiobjective Optimization觉得有用的话,欢迎一起讨论相互学习~最近我在学习约束多目标问题的论文,其中由明博士和张教授发表在TEVC上的c-DPEA非常不错~此篇文章为 M. Ming, A. Trivedi, R. Wang, D. Srinivasan and T. Zhang, "A Dual-Popul原创 2022-03-29 18:02:37 · 3856 阅读 · 1 评论 -
从PCC到MIC,理解变量之间的相关性
选自FreeCoderCamp作者:Peter Gleeson机器之心编译参与:陈韵竹、程耀彤、刘晓坤原文链接:https://medium.freecodecamp.org/how-machines-make-predictions-finding-correlations-in-complex-data-dfd9f0d87889本文为机器之心编译,转载请联系公众号获得授权。本文分享自微信公众号 - 机器之心(almosthuman2014)原文出处及转载信息见文内详细说明,如有侵权,请联系转载 2021-11-28 19:55:32 · 2736 阅读 · 0 评论 -
【转】距离相关系数以及python包的安装
距离相关系数以及python包的安装觉得有用的话,欢迎一起讨论相互学习~版权声明:本文为CSDN博主「 LUC 」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。原文链接:https://blog.csdn.net/weixin_45456209/article/details/108356586距离相关系数:研究两个变量之间的独立性,距离相关系数为0表示两个变量是独立的。克服了皮尔逊相关系数(Pearson)的弱点。pearson相关系数为0并不一定表示转载 2021-11-06 13:54:29 · 573 阅读 · 0 评论 -
【转】一文读懂PCA算法的数学原理
一文读懂PCA算法的数学原理来源:算法数学俱乐部,算法与数学之美,编辑:nhyilin觉得有用的话,欢迎一起讨论相互学习~PCA(Principal Component Analysis)是一种常用的数据分析方法。PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维。网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲述其中的原理。这篇文章的目的是介绍PCA的基本数学原理,帮助读者了解PCA的工作机制是什么。转载 2021-11-03 14:30:44 · 763 阅读 · 0 评论 -
【转】Maximal Information Coefficient (MIC)最大互信息系数详解与实现
Maximal Information Coefficient (MIC)最大互信息系数详解与实现————————————————版权声明:本文为CSDN博主「Font Tian」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。原文链接:https://blog.csdn.net/FontThrone/article/details/85227239感谢Font Tian的分享,仅作学术交流,如有侵权-联系后台删除~觉得有用的话,欢迎一起讨论相互学习~MI转载 2021-11-03 12:04:27 · 4807 阅读 · 0 评论 -
【转】带约束的多目标优化进化算法综述
带约束的多目标优化进化算法综述觉得有用的话,欢迎一起讨论相互学习~————————————————版权声明:本文为CSDN博主「街灯下的哥斯拉」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。原文链接:https://blog.csdn.net/a1920993165/article/details/111239813约束优化进化算法综述1.摘要约束优化进化算法主要研究如何利用进化计算方法求解约束优化问题,是进化计算领城的一个重要研究课题.约束优化问题求解转载 2021-11-02 22:55:43 · 2554 阅读 · 0 评论 -
Jmetal和PlatEMO中计算IGD时的结果差异
Jmetal和PlatEMO中计算IGD时的结果差异觉得有用的话,欢迎一起讨论相互学习~如果你不知道IGD是如何计算的,欢迎查看原先的博文IGD反转世代距离-多目标优化评价指标概念及实现最近的实验过程中,发现即使是同样的种群,在PlatEMO和Jmetal上计算有差异,大概Jmetal比PlatEMO上少一个 数量级Jmetal Codepublic double invertedGenerationalDistance(double [][] front,原创 2021-10-27 11:13:48 · 818 阅读 · 5 评论 -
多目标中的Worst, Nadir, Ideal, Extreme Points
Worst-Nadir-Ideal-Extreme-Points in MOPs觉得有用的话,欢迎一起讨论相互学习~以下内容来自于王晗丁教授的论文-“Nadir point estimation for many-objective optimization problems based on emphasized critical regions” 仅做论文研读而不做商业用途,在此感谢王教授!!比心!“Wang, H., He, S., & Yao, X. (2015). Nadir p原创 2021-10-19 09:00:36 · 1170 阅读 · 0 评论 -
论文快报-2021-10-Multi-task optimization and evolutionary multitasking
论文快报-2021-10-Multi-task optimization and evolutionary multitasking觉得有用的话,欢迎一起讨论相互学习~A Multi-Variation Multifactorial Evolutionary Algorithm for Large-Scale Multi-Objective Optimization传送门摘要For solving large-scale multi-objective problems (LSMOPs),原创 2021-10-18 10:11:06 · 926 阅读 · 0 评论 -
论文研读-用于处理昂贵问题的广义多任务优化GMFEA
论文研读-用于处理昂贵问题的广义多任务优化GMFEAGeneralized Multitasking for Evolutionary Optimization of Expensive ProblemsGMFEA觉得有用的话,欢迎一起讨论相互学习~此篇文章为 J. Ding, C. Yang, Y. Jin, T. Chai, Generalized Multitasking for Evolutionary Optimization of Expensive Problems, IEEE原创 2021-09-26 14:11:48 · 840 阅读 · 1 评论 -
论文研读-基于线性领域适应的进化多任务LDA-MFEA
论文研读-基于线性领域适应的进化多任务LDA-MFEALinearized Domain Adaptation in Evolutionary MultitaskingLDA-MFEA觉得有用的话,欢迎一起讨论相互学习~此篇文章为 [1]K.K. Bali, A. Gupta, L. Feng, Y.S. Ong, Tan Puay Siew, Linearized domain adaptation in evolutionary multitasking, in: 2017 IEEE Con原创 2021-09-26 14:10:45 · 471 阅读 · 0 评论 -
【转载】降噪自动编码器
降噪自动编码器降噪自动编码器(Denoising Autoencoder)觉得有用的话,欢迎一起讨论相互学习~转载自:https://www.cnblogs.com/neopenx/p/4370350.html作者:Physcalの大魔導書感谢大佬,大佬的文章就是浅显易懂而NB起源:PCA、特征提取…随着一些奇怪的高维数据出现,比如图像、语音,传统的统计学-机器学习方法遇到了前所未有的挑战。数据维度过高,数据单调,噪声分布广,传统方法的“数值游戏”很难奏效。数据挖掘?已然挖不出有用的东转载 2021-09-25 21:52:34 · 2174 阅读 · 0 评论 -
论文研读-显式自编码器的进化多任务优化方法
论文研读-显式自编码器的进化多任务优化方法Evolutionary Multitasking via Explicit AutoencodingEMT-A/EMEA觉得有用的话,欢迎一起讨论相互学习~此篇文章为 L. Zhou, L. Feng, K.C. Tan, J. Zhong, Z. Zhu, K. Liu, C. Chen, Toward Adaptive Knowledge Transfer in Multifactorial Evolutionary Computation, IE原创 2021-09-25 21:39:12 · 1294 阅读 · 2 评论 -
论文研读-异构问题学习的自动编码进化搜索
论文研读-异构问题学习的自动编码进化搜索Autoencoding Evolutionary Search With Learning Across Heterogeneous Problems觉得有用的话,欢迎一起讨论相互学习~此篇文章为 L. Feng, Y.-S. Ong, S. Jiang, A. Gupta, Autoencoding Evolutionary Search With Learning Across Heterogeneous Problems, IEEE Trans. E原创 2021-09-24 21:38:56 · 1225 阅读 · 1 评论 -
论文研读-多因子进化算法中的自适应知识迁移MFEA-AKT
论文研读-多因子进化算法中的自适应知识迁移MFEA-AKTToward Adaptive Knowledge Transfer in Multifactorial Evolutionary Computation觉得有用的话,欢迎一起讨论相互学习~此篇文章为 [1]L. Zhou, L. Feng, K.C. Tan, J. Zhong, Z. Zhu, K. Liu, C. Chen, Toward Adaptive Knowledge Transfer in Multifactorial E原创 2021-09-22 16:07:47 · 1389 阅读 · 0 评论 -
论文研读-多目标多任务优化MOMFEA-II
论文研读-多目标多任务优化MOMFEA-IICognizant Multitasking in Multi-Objective Multifactorial Evolution: MO-MFEA-II觉得有用的话,欢迎一起讨论相互学习~此篇文章为 K.K. Bali, A. Gupta, Y.-S. Ong, P.S. Tan, Cognizant Multitasking in Multiobjective Multifactorial Evolution: MO-MFEA-II, IEEE T原创 2021-09-21 10:50:55 · 2915 阅读 · 4 评论 -
【转】标准化和归一化请勿混为一谈
【转】标准化和归一化请勿混为一谈觉得有用的话,欢迎一起讨论相互学习~版权声明:本文为CSDN博主「夏洛克江户川」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。原文链接:https://blog.csdn.net/weixin_36604953/article/details/102652160...转载 2021-09-09 14:12:48 · 260 阅读 · 0 评论 -
【转】关于数据的异常检测一篇就够了
关于数据的异常检测一篇就够了觉得有用的话,欢迎一起讨论相互学习~版权声明:本文为CSDN博主「携程技术中心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。原文链接:https://blog.csdn.net/Nx2XJBUr4Jg8ef80l1K/article/details/89325127作者简介束开亮,携程大市场部BI团队,负责数据分析与挖掘。同济应用数学硕士,金融数学方向,法国统计学工程师,主修风险管理与金融工程。前言 制造厂商需要抽样检测流水线转载 2021-09-09 13:50:03 · 786 阅读 · 0 评论 -
【转】异常值处理
【转】什么样的值是异常值?觉得有用的话,欢迎一起讨论相互学习~版权声明:本文为CSDN博主「sljwy」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。原文链接:https://blog.csdn.net/sinat_23971513/article/details/114918790简单来说,即在数据集中存在不合理的值,又称离群点。我们举个例子,做客户分析,发现客户的年平均收入是80万美元。 但是,有两个客户的年收入是4美元和420万美元。 这两个客户的年收入转载 2021-09-09 13:39:19 · 447 阅读 · 0 评论 -
【转】一文读懂协方差和协方差矩阵
【转】浅谈协方差觉得有用的话,欢迎一起讨论相互学习~转载自:https://www.cnblogs.com/invisible2/p/11442777.html作者:invisible_man转载 2021-09-04 20:37:50 · 221 阅读 · 0 评论 -
【转】直观地理解协方差矩阵
【转】直观地理解协方差矩阵觉得有用的话,欢迎一起讨论相互学习~版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。本文链接:https://blog.csdn.net/a943368093/article/details/103765333需要说明的是,协方差矩阵中研究的样本是一个维度为n的多维向量,因此协方差矩阵一定是一个n*n的方阵...转载 2021-09-04 20:36:52 · 423 阅读 · 0 评论 -
【转】高斯分布函数的乘积与代码实现
【转】高斯分布函数的乘积与代码实现————————————————版权声明:本文为CSDN博主「棕熊的肚皮」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。原文链接:https://blog.csdn.net/u012836279/article/details/80036417觉得有用的话,欢迎一起讨论相互学习~注意,转载这篇文章的时候,根据已有的评论,需要注意的是,这说的是 两个高斯分布函数的乘积 ,而不是两个高斯分布的乘积,也不是两个满足高斯分布的数据乘转载 2021-08-18 20:36:27 · 301 阅读 · 0 评论