
与多个数据库聊天的智能SQL代理问答和RAG系统
文章平均质量分 76
背太阳的牧羊人
管它什么真理无穷,进一寸有一寸的欢喜。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
用于与多个数据库聊天的智能 SQL 代理问答和 RAG 系统(4) —— 利用大型语言模型(LLM)生成和执行SQL查询,并通过语言模型处理查询结果生成最终答案
流程概述用户通过query_travel_sqldb()传入查询。TravelSQLAgentTool通过语言模型生成SQL查询。生成的SQL查询通过QuerySQLDataBaseTool执行,获取查询结果。根据系统角色提示,最终生成答案,回答用户的问题。这段代码的主要功能是结合语言模型和SQL数据库,使得用户能够用自然语言查询与旅行相关的数据库信息。原创 2025-01-13 13:52:56 · 761 阅读 · 0 评论 -
用于与多个数据库聊天的智能 SQL 代理问答和 RAG 系统(3) —— 基于 LangChain 框架的文档检索与问答功能以及RAG Tool的使用
用途:实现基于文档的问答系统,用于快速查询特定文档的内容。适用场景:公司政策文档检索(如航空政策)。产品说明文档或技术支持文档查询。法律条款、合同内容等信息的检索与问答。原创 2025-01-09 21:15:00 · 568 阅读 · 0 评论 -
用于与多个数据库聊天的智能 SQL 代理问答和 RAG 系统(2) —— 从 PDF 文档生成矢量数据库 (VectorDB),然后存储文本的嵌入向量
这段代码是一个自动化流程,用于将 PDF 文档处理为可用于检索的矢量嵌入,并持久化存储。提供了灵活性,允许根据不同任务加载不同的文档和配置。适合用于构建文档检索或问答系统等应用场景。原创 2025-01-09 21:15:00 · 830 阅读 · 0 评论 -
用于与多个数据库聊天的智能 SQL 代理问答和 RAG 系统(1) —— 使用 LangChain 中的 TavilySearchResults 类创建一个搜索工具
使用 LangChain 中的 TavilySearchResults 类创建一个搜索工具实例,并尝试执行一个搜索任务。原创 2025-01-09 20:15:00 · 493 阅读 · 0 评论