1、原文
Improving Performance of Federated Learning based Medical Image Analysis in Non-IID Settings using Image Augmentation
https://ieeexplore.ieee.org/document/9654356/
2、摘要
联邦学习(FL)是一个合适的解决方案使用属于必须在严格的隐私约束下工作的患者、人员、公司或行业的敏感数据。FL主要或部分支持数据隐私和安全问题,并为模型问题提供了一种替代方案,便于多个边缘设备或组织使用大量本地数据进行全局模型的训练,而无需它们。FL的非IID数据由其分布引起退化和稳定偏差。本文介绍了一种通过增强图像来动态平衡客户端数据分布的新方法,以解决FL的非IID数据问题。引入的方法显着稳定了模型训练,并将模型的测试准确率从83.22%提高到89.43%,用于高度非IIDFL设置的胸部X线图像的多胸部疾病检测。IID、非IID和非IID与所提出的方法联合训练的结果展示了建议的方法 可能有助于鼓励组织或研究人员开发更好的系统,以从数据中获取与数据隐私相关的价值,不仅适用于医疗保健,还适用于其他领域。
3、正文
--------------------------------------------------------
----------------------------------------------------------------
------------------------------------------------------------------
----------------------------------------------------------------
--------------------------------------------------------------------
4、结论
在本文中,成功引入了一种通过增强图像来动态平衡客户数据分布的新方法,以解决FL的非IID数据问题,并将最终模型对多胸疾病的准确率从83.22%提高到89.43%。IID、non-IID和non-IID与引入的方法的结果表明,所提出的方法可能有助于为医疗保健和其他领域开发更好的解决方案。数据效用和隐私是提高模型精度或模型架构的另一个重要权衡。使用非IID数据提高FL的性能可能会鼓励医疗机构开始或采用他们的FL方法研究,以开发数据驱动的智能解决方案,以降低面临数据泄露或隐私监管罚款的风险。FL的采用可能在为数据隐私问题仍然存在的行业开发DL应用程序方面发挥关键作用,由于法律法规,大量且多样化的私人数据难以访问和处理。然而,现实世界中大规模分布式客户端的高度不平衡数据对FL提出了重大挑战。如[15]中所述,将数据保存在本地而不与服务器共享会面临高级攻击。如本文所建议的那样增加数据效用可能有助于在客户端使用诸如差分隐私算法随机扰动数据、模型或输出并支持隐私和效用问题等方法来建立和训练DL模型。作者将在未来的工作中专注于平衡FL架构的非IID分布的高级策略。可以开发用于客户端选择的智能算法来选择具有相似数据分布的客户端,而不是平衡本地分布。