- 博客(169)
- 收藏
- 关注
原创 MobileNet模型原理及实现流程
MobileNet模型是一种轻量级的深度学习网络架构,旨在在移动设备上实现高效的图像识别任务。以下将详细阐述MobileNet模型的原理及实现流程。
2024-09-21 10:38:09 511
原创 ResNet模型原理及Pytorch实现
ResNet(Residual Network,残差网络)模型是由微软亚洲研究院的何凯明等人在2015年提出的一种深度神经网络结构。其核心原理在于通过残差连接(residual connections)解决了深层网络训练中的梯度消失和梯度爆炸问题,使得网络可以训练得更深,性能更强。
2024-09-19 23:23:55 1269
原创 GoogleNet模型原理及Pytorch实现
GoogleNet模型,也被称为Inception-v1,是由Google团队在2014年提出的一种深度卷积神经网络架构,专门用于图像分类和特征提取任务。该模型在ILSVRC(ImageNet Large Scale Visual Recognition Challenge)比赛中取得了优异成绩,其创新的核心在于引入了“Inception”模块。
2024-09-19 23:22:31 1277
翻译 DDIPNET和DDIPNET+:遥感图像分类的判别深度图像先验网络
遥感图像分类研究对城市规划和农业等基本人类日常任务产生了重大影响。如今,技术的快速进步和许多高质量遥感图像的可用性创造了对可靠自动化方法的需求。目前的论文提出了两种新颖的基于深度学习的图像分类架构,即判别深度图像先验网络和判别深度图像先验网络+,它们结合了深度图像先验和三重网络学习策略。在三个著名的公共遥感图像数据集上进行的实验取得了最先进的结果,证明了使用深度图像先验进行遥感图像分类的有效性。
2024-09-18 23:44:27 88
翻译 DA2Net:用于鲁棒遥感图像场景分类的注意力驱动对抗网络
光学遥感图像(RSI)容易受到天气条件的影响。当地面目标被云遮挡时,从RSI中提取场景信息变得非常具有挑战性。在这项工作中,我们提出了一种分散注意力驱动的对抗训练网络(DA2Net)来学习鲁棒的RSI场景分类模型。分心模块采用基于梯度的类激活映射(GradCAM++)方法来产生部分被遮挡的样本。通过特征图可视化,GradCAM++可以量化每个区域对网络预测的贡献。如果相应的贡献高于给定阈值,则输入图像中的区域将被擦除并用白色像素填充。这样,分心模块丰富了训练样本的多样性,有利于网络的鲁棒性和泛化性能。
2024-09-18 23:42:15 94
原创 VGG模型原理及Pytorch实现
VGG模型,全称Visual Geometry Group Network(简称VGGNet),是一种深度卷积神经网络模型,其原理基于卷积神经网络(CNN)的基本思想,通过多层卷积和池化操作来提取图像特征。VGG模型在图像识别领域取得了显著的成果,并在多个计算机视觉任务中得到了广泛应用。
2024-09-18 23:39:43 865
原创 AlexNet模型原理及Pytorch实现
AlexNet模型是深度学习领域中的一种经典卷积神经网络模型,由Alex Krizhevsky等人于2012年提出。该模型在ImageNet图像分类竞赛中取得了突破性成果,极大地推动了深度学习在计算机视觉领域的发展。
2024-09-18 23:38:35 876
翻译 基于互补学习的含噪声标签遥感图像场景分类
最近,许多基于深度卷积神经网络(DCNN)的方法被提出用于遥感(RS)图像场景分类(SC)。一般来说,DCNN在标签正确的情况下获得了良好的泛化能力。不幸的是,给定的样本有时会被错误标记。在这封信中,研究了带有噪声标签的RS图像的分类。首先,引入互补学习(CL),它从互补标签而不是原始标签中学习,用于带有噪声标签的RS图像分类。CL可以降低从错误信息中学习的概率,因此,它对噪声标签具有鲁棒性。然后,提出了随机干扰训练样本的互补标签的软CL,以防止在训练DCNN时出现过拟合问题。
2024-09-17 23:03:31 100
翻译 结合多级特征进行遥感图像场景分类与注意力模型
遥感(RS)图像场景分类由于其类内多样性和类间相似性而成为一项具有挑战性的任务。最近,许多基于卷积神经网络(CNN)的方法都在探索网络来处理这项任务。然而,RS图像除了相关对象外通常还有令人困惑的背景,仅从整个RS图像中提取的特征不能达到令人满意的结果。为了解决这个问题,这封信提出了一种利用注意力网络定位RS场景图像的多尺度判别区域并通过分类网络结合从局部区域学习的特征的方法。具体来说,分类网络由三个子网络组成,它们分别由一定的缩放区域进行训练。
2024-09-17 23:01:45 98
原创 GARCH时间序列模型原理及Python实践
GARCH(Generalized Autoregressive Conditional Heteroskedasticity)时间序列模型,即广义自回归条件异方差模型,是一种用于估计和预测时间序列数据波动率的统计模型。该模型由Bollerslev在1986年提出,作为ARCH(自回归条件异方差)模型的一种重要扩展。GARCH模型在金融时间序列分析中具有广泛的应用价值,特别是在金融市场波动性的建模和预测方面。
2024-09-17 22:59:59 1190
原创 ARCH时间序列模型原理及Python实践
ARCH(Autoregressive Conditional Heteroskedasticity)时间序列模型,即自回归条件异方差模型,是一种用于时间序列数据分析的统计模型,特别适用于金融数据分析中的波动性建模。该模型由罗伯特·英格兰(Robert Engle)在1982年提出,旨在捕捉和建模金融市场中常见的波动性聚集现象,即高波动期和低波动期会交替出现。
2024-09-17 22:59:11 1046
翻译 遥感图像跨域半监督分类的分类器约束深度对抗域自适应
这封信提出了一种分类器约束的深度对抗域自适应(CDADA)方法,用于遥感(RS)图像中的跨域半监督分类。深度卷积神经网络(DCNN)用于构建特征表示,以在适应过程之前描述场景的语义内容。然后,对抗域自适应用于对齐源和目标的特征分布。具体来说,使用两个不同的土地覆盖分类器作为判别器来考虑类别之间的土地覆盖决策边界,并增加它们的距离以将它们与原始土地覆盖类别边界分开。然后,生成器在分类器约束下创建远离原始土地覆盖类别边界的稳健可转移特征。
2024-09-16 23:06:20 118
翻译 基于深度学习架构的遥感应用高光谱图像分类
土地利用和土地覆盖在自然资源管理中起着至关重要的作用。它用于绘制环境变化图以进行生态系统监测。自动测绘可以为农业、城市管理和林业带来许多价值。深度学习技术的进步在图像分类领域取得了显著成果,主要应用于遥感领域。本文提出了基于深度学习技术的土地覆盖分类。它由具有编码器和解码器阶段的U-Net架构组成。编码器通过利用卷积层来实现语义表示。解码器部分借助跳跃连接恢复空间信息。所提出的方法与最先进的方法进行了比较,并产生了81.23%的土地覆盖数据集。
2024-09-16 23:02:44 155
原创 ARMA时间序列模型原理及Python实践
ARMA时间序列模型,全称为自回归移动平均模型(Autoregressive Moving Average Model),是时间序列分析中的经典模型之一。它结合了自回归(AR)和移动平均(MA)两种方法的优点,用于描述和预测时间序列数据的动态特性。
2024-09-16 22:59:14 1107
翻译 C2 CapsViT:用于遥感图像场景分类的跨上下文和跨尺度胶囊视觉变换器
准确解释图像内容在许多地球观测任务中起着至关重要的作用。这封信构建了一种新颖的跨上下文和跨尺度胶囊视觉转换器(C2-CapsViT)架构,用于遥感图像场景分类。首先,采用多上下文补丁嵌入策略,大大提高了令牌表示质量,以编码不同上下文的特征语义。其次,采用多尺度变换器块设计,同时利用不同粒度的远程全局特征交互和不同类型的特征自注意力来提高特征编码质量。此外,通过结合卷积和变换器结构,局部和全局特征语义被有效地融合以指导准确的预测。C2-CapsViT在三个场景分类数据集上进行了精心验证。
2024-09-15 23:39:33 98
翻译 BigEarthNet MM:一个用于遥感图像分类和检索的大规模、多模式、多标签基准档案
该文章介绍了多模式BigEarthNet(BigEarthNet-MM)基准存档,包括590,326对Sentinel-1和Sentinel-2图像补丁,用于支持多模态、多标签遥感(RS)图像检索和分类中的深度学习(DL)研究。BigEarthNet-MM中的每一对补丁都使用2018年CORINE土地覆盖(CLC)地图提供的多标签进行注释,该地图基于其主题上最详细的3级类别命名法。我们的初步研究表明,某些CLC类很难通过仅考虑(单一日期)BigEarthNet-MM图像来准确描述。
2024-09-15 23:37:54 199
原创 MA时间序列模型原理及Python实践
MA时间序列模型,即移动平均(Moving Average, MA)模型,是时间序列分析中的一种重要模型。
2024-09-15 23:35:31 1738
原创 AR时间序列模型原理及Python实践
AR时间序列模型(AutoRegressive Time Series Model),即自回归时间序列模型,是一种用于分析和预测时间序列数据的统计模型。
2024-09-15 23:33:09 1158
翻译 用于遥感图像场景分类的带宽多尺度CNN架构
图像场景分类问题框架中的大多数现有卷积神经网络(CNN)架构都是为对RGB图像波段进行建模而设计的。将这些架构直接应用于高维遥感(RS)场景分类可能不足以准确描述光谱内容。为了解决这个问题,我们提出了一种新颖的CNN架构,用于高维RS图像的特征嵌入。所提出的架构旨在:1)将光谱和空间特征提取解耦,以充分描述图像的复杂信息内容;2)利用图像中存在的不同土地利用和土地覆盖类别的多尺度表示。为此,所提出的架构主要由:1)卷积层,用于按带宽提取多尺度空间特征;2)一个卷积层,用于按像素提取光谱特征;
2024-09-14 23:55:40 90
翻译 通过遥感图像自动确定、特征提取和分类潮汐过程:初步研究
与河流不同,潮汐路径呈现出不同的排水方式复杂分布中的配置。确定它们的特征是对它们的进化建模的第一步。在这项工作中,提出了一种方法,用于在高分辨率卫星图像(IKONOS,1m分辨率)上自动提取和表征潮汐路径。该算法准确地计算结构的总长度。此外,它还通过超分辨率识别和表征每个分支。然后,对没有环路的排水路径进行分类,定义它们受潮汐影响的洪水和退潮的顺序。该方法在两条具有非常不同特征的潮汐路径上进行了测试:矩形或格状排水系统和树枝状排水系统。
2024-09-14 23:54:13 138
原创 乘法时间序列模型原理及Python实践
长期趋势成分(T[t]):代表时间序列在较长时期内呈现的持续上升或下降趋势,是时间序列的主要变动方向。季节变动成分(S[t]):反映时间序列随季节变化而出现的周期性波动,是时间序列在固定周期内的重复模式。循环变动成分(C[t]):指时间序列围绕长期趋势线进行的周期性波动,但其周期可能较长且不固定,与季节变动不同。不规则变动成分(I[t]):也称为残差成分或随机波动,表示时间序列中除趋势、季节性和周期性之外的所有随机变动和异常值。
2024-09-14 23:52:19 947
原创 加法时间序列模型原理及Python实践
趋势成分(T[t]):代表时间序列的长期趋势或发展方向,可以是线性的、非线性的,或者是通过某种方法(如线性回归、指数平滑等)拟合得到的。季节成分(S[t]):反映时间序列在固定周期内重复出现的模式或波动,这种周期性变化通常与季节、月份、星期等因素有关。周期成分(C[t]):在某些文献中,周期成分与季节成分有所区别,周期成分通常指的是更长时间范围内的周期性变动,如经济周期、行业周期等。然而,在加法模型中,周期成分有时会被视为季节成分的一种特殊形式,或者在某些情况下被单独考虑。残差成分(R[t]或I[t])
2024-09-14 23:51:29 754
翻译 基于深度卷积神经网络的高光谱遥感图像分类特征提取方法的评价与影响
HSI(高光谱图像)由更多的光谱带组成,用于地球上各种物体的分类。然而,这些大量的光谱带具有冗余信息并降低了分类精度。为了有效地执行分类,应用了降维方法。PCA是用于具有大量维度的数据的常用特征缩减技术。本研究工作提出了维度的PCA和因子分析实施时,从PCA和因子分析中提取的HSI数据的特征进行比较。此外,CNN(卷积神经网络)在减少特征以分离HSI数据后具有各种卷积层、池化层和全连接层。
2024-09-13 23:48:43 134
翻译 基于D波量子退火器的支持向量机集成遥感图像分类方法研究
支持向量机(SVM)是一种流行的监督机器学习(ML)方法,广泛用于分类和回归问题。最近,提出了一种在aD-Wav2000QQuantumAnnalr(QA)上训练SVM的方法,用于对一些生物数据进行二元分类。首先,通过在可以适合QA的不相交训练子集上训练每个分类器来生成弱量子SVM的集合。然后,融合计算出的弱解,以对看不见的数据进行预测。在这项工作中,讨论了具有在QA上训练的SVM的遥感(RS)多光谱图像的分类。此外,还发布了一个开放代码存储库,以促进早期进入QA(一种新的颠覆性计算技术)的实际应用。
2024-09-13 23:46:42 167
原创 趋势拟合法时间序列模型原理及Python实践
趋势拟合法时间序列模型原理主要基于统计学和回归分析的方法,其核心思想是将时间作为自变量,相应的序列观察值作为因变量,建立序列值随时间变化的回归模型。这种模型有助于揭示时间序列数据的长期趋势,从而进行预测和分析。
2024-09-13 23:44:59 1029
原创 平滑法时间序列模型原理及Python实践
平滑法时间序列模型是一种有效的数据分析和预测工具,通过对历史数据的平滑处理,能够揭示出数据中的长期趋势和季节性变化,为未来的数据预测提供有力支持。在选择平滑方法和确定参数时,需要根据数据的特性和预测需求进行综合考虑,以确保预测结果的准确性和可靠性。
2024-09-13 23:44:09 1246
翻译 以支持向量机为核心的遥感图像分类方法综述
为了更好地进行遥感(RS)图像分类,近年来在遥感图像分类领域提出了多种方法。一般来说,RS图像分类方法有两类:基于像素(PB)的方法和基于对象(OB)的方法。本文从PB方法和OB方法的角度对RS图像分类方法进行了综述,特别是对一种有前途的RS图像分类方法支持向量机(SVM)的发展和特点进行了综述。SVM在RS领域特别受欢迎,因为它可以处理小规模的训练数据集,并提供比一些传统方法(如最大似然分类器)更高的分类精度。此外,SVM还具有优势和强泛化。然而,基于SVM的方法也存在一些问题。
2024-09-12 22:43:00 137
翻译 基于对抗学习的开放集域自适应网络在遥感图像场景分类中的应用
遥感影像场景分类是指为遥感影像分配特定的语义标签。由于缺乏标记的遥感图像,因此将域自适应应用于遥感图像场景分类。然而,最近提出的方法主要集中在闭集场景上。在本文中,我们探索了开放集场景并引入了开放集域适应网络(OSDANet)用于遥感图像场景分类。受生成对抗网络(GAN)思想的启发,我们设计了一个以对抗方式学习的特征生成器和分类器。分类器的目的是找到源样本和目标样本之间的边界,而特征生成器试图迫使目标样本远离边界。特别是对于目标样本,特征生成器将决定是将它们与源样本对齐还是将它们作为未知目标样本拒绝。
2024-09-12 22:40:23 98
原创 灰色关联法原理及Python实践
灰色关联法,又称灰色关联分析(Grey Relational Analysis),是一种用于研究系统内部因素之间或系统之间随时间或不同对象而变化的关联性大小的量度方法。
2024-09-12 22:38:03 850
原创 Eclat算法原理及Python实践
Eclat算法是一种用于频繁项集挖掘的数据挖掘算法,其全称可以理解为“Equivalence Class Clustering and bottom-up Lattice Traversal”(等价类聚类和自底向上的格遍历)。该算法在数据挖掘、市场分析、电子商务推荐系统等多个领域有着广泛的应用。
2024-09-12 22:36:08 1151
翻译 遥感场景图像分类的深域自适应网络评价
高性能深度神经网络的分类方式依赖于大规模和高质量的标记样本。然而,在遥感影像领域很难获得大量高质量的数据集。最常见的解决方案是使用微调的预训练神经网络来学习,这反而带来了数据偏差。同时,不同时相的遥感影像也会发生变化。它导致违反训练和测试数据之间的假设。在本文中,我们将四种深度自适应网络应用于遥感图像迁移和分类实验,并对遥感图像分类的深度域自适应进行了实验评估。首先选取两组公共遥感光学场景分类数据,将两组数据在上述四个网络中进行对比,得到不同网络结构下的传递精度,然后对比分析不同类别的分类精度。
2024-09-11 22:30:50 87
翻译 高光谱遥感图像子空间检测与分类分析
高光谱图像分类是一项具有挑战性的任务,因为它包含大量数据,并且所需的光谱特征并不总是可用。因此,分类过程面临维度灾难问题。然而,它在成功分类后的许多应用中非常有用,因为它包含许多关于地面物体的有用信息。这种复杂性可以通过在图像分类之前减少不相关的特征来克服。从大型输入数据集中,可以通过主成分分析(PCA)提取所需的信息。因此,针对上述问题,本文采用PCA来降低输入维数并提高分类精度。为了评估所提出方法的有效性,使用了真实的高光谱数据,并且该数据也用于进行实验分析。
2024-09-11 22:29:23 85
原创 FP-Tree算法原理及Python实践
FP-Tree算法的主要目的是通过减少数据库扫描次数和提高数据压缩率来提高频繁项集挖掘的效率。它通过将原始的事务数据集转换为一个紧凑的树形结构(FP-Tree),并在该树上进行挖掘操作来实现这一目标。
2024-09-11 22:27:16 560
原创 Apriori算法原理及Python实践
Apriori算法由R. Agrawal和R. Srikant于1994年提出,它采用逐层搜索的迭代方法,通过连接和剪枝步骤来发现数据库中的频繁项集。这些频繁项集进而被用来生成关联规则,这些规则满足用户定义的最小支持度和最小置信度阈值。
2024-09-11 22:26:17 733
翻译 基于深度学习的遥感图像飞机类型分类
在航空领域,数据的冗余性很强希望做出最优决策。随着遥感影像所用技术的发展,大量的数据源可用。遥感图像分类(RSIC)广泛应用于军事和民用领域。为了提高多标签分类的性能,我们解决了基于卷积神经网络(CNN)的RSIC用于飞机类型遥感图像的问题。以前的研究使用了密集的预处理,这限制了分类率。我们改进了网络结构,使其更准确,并限制欠拟合或过拟合问题。在这项工作中使用了一个最近称为多型飞机遥感图像(MTARSI)的公共数据集来验证我们的方法。大量实验证明了所提出方法在准确性方面的有效性。
2024-09-10 22:45:42 102
翻译 基于标签融合的半监督暹罗网络用于遥感图像场景分类
遥感影像场景分类需要大量的标注数据,在一系列领域发挥着至关重要的作用。然而,在实际复杂的环境中,由于数据的扰动和人工标注的成本,得到的遥感影像有时会出现未标注的情况,这限制了训练效果和泛化能力。针对这一问题,提出了一种基于标签融合的半监督siamese网络用于遥感图像场景分类。建立siamese网络用于从遥感图像中提取特征,构建基于低熵原理的损失函数选择未标记的数据作为伪标签样本。混合标记和伪标记样本以进一步训练孪生网络。
2024-09-10 22:43:11 59
原创 贝叶斯网络原理及Python实践
贝叶斯网络(Bayesian Network),又称信度网络(Belief Network)或是有向无环图模型(Directed Acyclic Graphical Model),是一种概率图模型,用于表示变量间依赖关系的图形模型。
2024-09-10 22:39:00 719
原创 朴素贝叶斯原理及Python实践
朴素贝叶斯分类器基于贝叶斯定理和特征条件独立假设,通过计算后验概率来进行分类。尽管其假设(特征条件独立)在现实中往往不成立,但朴素贝叶斯分类器在许多实际应用中仍表现出色,尤其是在文本分类等领域。
2024-09-10 22:38:05 1173
翻译 用于遥感图像场景分类的场景图像多样性改进生成对抗网络
为了实现良好的遥感图像场景分类,深度学习模型在训练阶段通常需要大量样本。不幸的是,收集大量的训练场景图像通常涉及大量的采集和处理成本。相比之下,在训练生成对抗网络(GAN)之后,场景样本随后可以由生成器以低成本自动生成。然后,可以将生成的图像添加到训练集中。当这些样本包含比原始真实图像更多样化的场景结构和基本特征时,将获得具有更好分类能力的模型。在这封信中,我们提出了场景图像多样性改进GAN(diversity-GAN)。Diversity-GAN有两个重要的优势。
2024-09-09 22:15:14 98
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人