11079 可以移动的石子合并(贪心)

11079 可以移动的石子合并

时间限制:1000MS  内存限制:1000K
提交次数:0 通过次数:0 

题型: 编程题   语言: C++;C;VC;JAVA

Description

有n堆石子形成一行(a1,a2,…,an,ai为第i堆石子个数),现要将石子合并成一堆,规定每次可选择至少2堆最多k堆移出然后合并,每次合并的分值为新堆的石子数。
若干次合并后,石子最后肯定被合并为一堆,得分为每次合并的分值之和。
现在求解将这n堆石子合并成一堆的最低得分和最高得分。



输入格式

两行。第一行n和k,第二行a1 a2 … an,每个ai(1<=i<=n)表示第i堆石子的个数,n<=100,2<=k<=n。


输出格式

仅一行,为石子合并的最低得分和最高得分,中间空格相连。


输入样例

7 3
45 13 12 16 9 5 22


输出样例

199 593


提示

此题贪心算法求解.
给这题标记标签"dp"方法是同学所为,并非老师标注.动规不是不可以,但有更好更快的贪心解法的.

如7堆石头,每次可选择最少2堆最多3堆合并,可以如下这样合并:
第1次合并:45+22=67
第2次合并:67+16=83
第3次合并:83+13=96
第4次合并:96+12=108
第5次合并:108+9=117
第6次合并:117+5=122
合并的总分值:67+83+96+108+117+122=593,593已是最大分值。

也可以这样合并:
第1次合并:5+9+12=26
第2次合并:13+16+22=51
第3次合并:45+51+26=122
合并的总分值:26+51+122=199,199已是最小分值。

因此此题贪心的方法如下:

(1)保证每次选两堆最多的,合并直至只剩一堆为止,能获得最大得分;
这个和huffman树构造是相同的,不再详述!

(2)保证每次选k堆最少的,合并直至只剩一堆为止,能获得最小得分。
这个是多元huffman树的构造。要注意的是:在合并之前,若n%(k-1)!=1,说明合并到最后一轮时,剩下不是k堆(而是比k堆少),这样算的并不是最小得分,
而必须在合并之前添加若干个为0的虚拟堆,目的为凑成的堆数保证每次都能有k堆合并(包括最后一次)最后合并为1堆。
因此,在合并前作如下处理:

//假设石头每堆个数放于stone[1]~stone[n],且stone[n]之后最多k-1个数组单元为可写;
while (n % (k - 1) != 1)
{
        n++;
        stone[n]=0;
}


作者

zhengchan


我的实现代码:

其中sort()用插入排序替换更佳
#include <iostream>
#include <algorithm>

using namespace std;
/*
测试数据:
 
7 3
45 13 12 16 9 5 22

6 3
1 2 3 4 5 6

*/

int main()
{
    int n,k;
    cin >> n >> k;
    
    int stone[n+10];
    
    for (int i = 0; i < n; i++) {
        cin >> stone[i];
    }
    
    int cur;
    int minC = 0,maxC = 0;
    int minTemp, maxTemp;
    
    sort(stone, stone + n);
    
    cur = n-1;
    maxTemp = stone[cur];
    while (cur != 0) {// 求最大
        maxTemp = maxTemp + stone[cur - 1];
        maxC += maxTemp;
        cur--;
    }
    
//  ========================================================================
    
    
    //假设石头每堆个数放于stone[1]~stone[n],且stone[n]之后最多k-1个数组单元为可写;
    while (n % (k - 1) != 1) {
        stone[n++] = 0;
    }
    
    sort(stone, stone + n);
    
    cur = 0;
    minTemp = stone[cur];
    while (cur <= n - k) {// 求最小
        
        for (int i = 0; i < k - 1; i++) {
            stone[cur + k-1] += stone[cur + i];
        }
        minC += stone[cur + k-1];
        cur += k-1;
        
        sort(stone, stone + n);
//        for (int i = 0; i < n; i++) {
//            cout << stone[i] << " ";
//        }
//        cout << endl;
    }
    
    cout << minC << " " << maxC;
    
    cout << endl;
    return 0;
}

以上代码太烂,也不删了,当作过程记录
使用“堆”辅助,代码更新如下:
#include <iostream>
#include <queue>
#include <algorithm>

using namespace std;
/*
 测试数据:

7 3
45 13 12 16 9 5 22

6 3
1 2 3 4 5 6

10 4
10 9 8 7 6 5 4 3 2 1

 */

int main()
{
    int n, k;
    cin >> n >> k;

    priority_queue<int> maxHeap;// 大顶堆
    priority_queue<int, vector<int>, greater<int> > minHeap;// 小顶堆

    int temp;// 记录输入值
    for (int i = 0; i < n; i++) {
        cin >> temp;
        maxHeap.push(temp);// 入大顶堆
        minHeap.push(temp);// 入小顶堆
    }

    int maxCount = 0;// 记录最高得分
    while (maxHeap.size() != 1) {// 只剩1堆,合并完成

        // 求最高得分,则每次取分值最高的2堆合并
        int maxT = maxHeap.top();
        maxHeap.pop();
        maxT += maxHeap.top();
        maxHeap.pop();

        maxHeap.push(maxT);// 合并所得,入大顶堆
        maxCount += maxT;// 统计最高得分
    }

    while (n % (k - 1) != 1) {// 保证最后一次合并时有k堆石子,否则结果错误!
        minHeap.push(0);
        n++;// n相应变大
    }

    int minCount = 0;// 记录最低得分
    while (minHeap.size() != 1) {// 只剩1堆,合并完成

        // 求最低得分,则每次取分值最低的k堆合并
        int minT = 0;
        for(int i = 0; i < k; i++){
            minT += minHeap.top();
            minHeap.pop();
        }

        minHeap.push(minT);// 合并所得,入小顶堆
        minCount += minT;// 统计最低得分
    }

    cout << minCount << " " << maxCount << endl;
    return 0;
}




  • 5
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
做如下两个模型的石子合并,如下模型石子都不能移动出列,且合并都仅发生在相邻两堆石子中: (1)第一个模型:一行排列且相邻合并 有n堆石子形成一行(a1,a2,…,an,ai为第i堆石子个数),相邻两堆可合并,合并的分值为新堆的石子数。求合并为一堆的最低得分和最高得分。 (2)第二个模型:一圈排列且相邻合并 有n堆石子形成首位相连的一个环形(a1,a2,…,an,ai为第i堆石子个数,an和a1相邻),相邻两堆可合并,合并的分值为新堆的石子数。求合并为一堆的最低得分和最高得分。 例如4堆石子,每堆石子个数:9 4 4 5 若排成一行,最小分值:(4+4)+(8+5)+(9+13)=43,最大分值:(9+4)+(13+4)+(17+5)=52。 若排成圈状,最小分值:(4+4)+(8+5)+(9+13)=43,最大分值:(9+5)+(14+4)+(18+4)=54。 此题以第一模型的最低得分为例,很多同学想着采用总是从最小的相邻两堆下手的思想,最后获得的也就是最低得分。但这个贪心策略是不对的。 如下反例: 石子:9 4 6 1 5 贪心策略: 9 4 6 6 6 9 10 6 10 9 16 16 25 25 得分共计:6+10+16+25=57 但9 4 6 1 5 若如下方式合并: 13 6 1 5 13 13 6 6 6 13 12 12 25 25 13+6+12+25=56 或 9 4 6 6 6 9 4 12 12 13 12 13 25 25 6+12+13+25=56 后两种方式合并出的56都比贪心策略的57来的更低,因为总选择最小的相邻两堆去合并,并不能保证后续每步都可以最小,也许这轮最小导致后续几轮分值较大。 Input 两行。第一行n,第二行a1 a2 … an,每个ai(1<=i<=n)表示第i堆石子的个数,n<=100 Output 两行。第一行是第一个模型的最低得分和最高得分,中间空格相连,第二行是第二个模型的最低得分和最高得分,中间空格相连。 Sample Input 4 9 4 4 5 Sample Output 43 52 43 54 Hint 第一个石子合并模型,和书上3.1节的矩阵连乘问题类似. 假设m[i,j]为合并石子ai…aj, 1≤i≤j≤n,所得到的最小得分,若没有“合并”这个动作,则为0。原问题所求的合并最小值即为m[1,n]。 递推公式如下,其中min表示求最小,sum表示求和. (1) m[i,j]=0, if i=j (2) m[i,j]=min{m[i,k]+m[k+1][j] | for i<=k<j} + sum{a(t) | for i<=t<=j}, if i<j 至于求最大值完全同理. 至于第二个石子合并的环行模型,完全可以转化为第一个模型来求解.

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值