- 博客(2)
- 收藏
- 关注
原创 DBNet
文本检测模型-DBNet描述模型结构数据准备Loss 描述 原文链接:https://arxiv.org/pdf/1911.08947.pdf 原文代码链接:https://github.com/MhLiao/DB DBNet是一种基于分割的文本检测模型,这篇论文提出了一种可微分二值化方式,将模型输出的概率图与阈值图二值化成为预测结果的二值图。该模型引入带k梯度增益因子的sigmoid作为二值化方程,预测了文本的概率图和阈值的概率图,使用阈值+DB增加预测错误的梯度,提升文本检测的效果。 如图为DBNet
2021-06-29 16:48:37 636
原创 CRNN文本识别模型
CRNN文本识别模型描述模型结构CNNRNNCTC 描述 CRNN是一种简单高效的文本识别模型。相比与Attention类型的文本识别模型,其具有如下优缺点。 优点: 容易训练,模型容易收敛,且鲁棒性较高。 易于部署,模型结构简单,inference速度快且支持变长输入,适合文本长度变化较大的生产环境。 缺点: 识别准确率相对较低,在包含大量中文字符集情况下,会比RARE类型的Attention模型低不少,英文字符集的情况下会低更多。 对于艺术字等有较大形变的短文本,或自然场景下的变化较大的文本,CR
2021-06-28 22:15:51 4270
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人