zhenming0303
码龄11年
关注
提问 私信
  • 博客:5,069
    5,069
    总访问量
  • 2
    原创
  • 1,370,535
    排名
  • 0
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:上海市
  • 加入CSDN时间: 2014-01-28
博客简介:

zhenming的博客

查看详细资料
个人成就
  • 获得0次点赞
  • 内容获得0次评论
  • 获得16次收藏
创作历程
  • 2篇
    2021年
成就勋章
TA的专栏
  • 算法
    2篇
兴趣领域 设置
  • 人工智能
    pytorch
创作活动更多

新星杯·14天创作挑战营·第9期

这是一个以写作博客为目的的创作活动,旨在鼓励大学生博主们挖掘自己的创作潜能,展现自己的写作才华。如果你是一位热爱写作的、想要展现自己创作才华的小伙伴,那么,快来参加吧!我们一起发掘写作的魅力,书写出属于我们的故事。我们诚挚邀请你们参加为期14天的创作挑战赛! 注: 1、参赛者可以进入活动群进行交流、分享创作心得,互相鼓励与支持(开卷),答疑及活动群请见 https://bbs.csdn.net/topics/619626357 2、文章质量分查询:https://www.csdn.net/qc

475人参与 去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

DBNet

文本检测模型-DBNet描述模型结构数据准备Loss描述原文链接:https://arxiv.org/pdf/1911.08947.pdf原文代码链接:https://github.com/MhLiao/DBDBNet是一种基于分割的文本检测模型,这篇论文提出了一种可微分二值化方式,将模型输出的概率图与阈值图二值化成为预测结果的二值图。该模型引入带k梯度增益因子的sigmoid作为二值化方程,预测了文本的概率图和阈值的概率图,使用阈值+DB增加预测错误的梯度,提升文本检测的效果。如图为DBNet
原创
发布博客 2021.06.29 ·
673 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

CRNN文本识别模型

CRNN文本识别模型描述模型结构CNNRNNCTC描述CRNN是一种简单高效的文本识别模型。相比与Attention类型的文本识别模型,其具有如下优缺点。优点:容易训练,模型容易收敛,且鲁棒性较高。易于部署,模型结构简单,inference速度快且支持变长输入,适合文本长度变化较大的生产环境。缺点:识别准确率相对较低,在包含大量中文字符集情况下,会比RARE类型的Attention模型低不少,英文字符集的情况下会低更多。对于艺术字等有较大形变的短文本,或自然场景下的变化较大的文本,CR
原创
发布博客 2021.06.28 ·
4385 阅读 ·
0 点赞 ·
0 评论 ·
13 收藏