CF22B 最大子矩阵问题简单版

http://codeforces.com/problemset/problem/22/B

B. Bargaining Table
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Bob wants to put a new bargaining table in his office. To do so he measured the office room thoroughly and drew its plan: Bob's office room is a rectangular room n × m meters. Each square meter of the room is either occupied by some furniture, or free. A bargaining table is rectangular, and should be placed so, that its sides are parallel to the office walls. Bob doesn't want to change or rearrange anything, that's why all the squares that will be occupied by the table should be initially free. Bob wants the new table to sit as many people as possible, thus its perimeter should be maximal. Help Bob find out the maximum possible perimeter of a bargaining table for his office.

Input

The first line contains 2 space-separated numbers n and m (1 ≤ n, m ≤ 25) — the office room dimensions. Then there follow n lines withm characters 0 or 1 each. 0 stands for a free square meter of the office room. 1 stands for an occupied square meter. It's guaranteed that at least one square meter in the room is free.

Output

Output one number — the maximum possible perimeter of a bargaining table for Bob's office room.

Sample test(s)
input
3 3
000
010
000
output
8
input
5 4
1100
0000
0000
0000
0000
output
16

/**
方法一:遍历每一子矩阵,O(n*m*m*n)
*/
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <iostream>
using namespace std;

char s[30][30];
int a,b;

int main()
{
    while(~scanf("%d%d",&a,&b))
    {
        for(int i=0;i<a;i++)
             scanf("%s",s[i]);
        int ss=0;
        for(int i=0;i<a;i++)
        {
            for(int j=0;j<b;j++)
            {
                int d=99999999;
                if(s[i][j]=='0')
                {
                    for(int k=0;k<=i;k++)
                    {
                        if(s[i-k][j]=='1')
                            break;
                        int l;
                        for(l=1;l<=j;l++)
                        {
                            if(s[i-k][j-l]=='1')
                                break;
                        }
                        d=min(d,l);
                        ss=max(ss,d*2+(k+1)*2);
                    }
                }
            }
        }
        printf("%d\n",ss);
    }
    return 0;
}

/**
方法二:CF 22B 扫描,O(n*m)
*/
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <iostream>
using namespace std;

const int maxn=1001;
int mat[maxn][maxn],up[maxn][maxn],lef[maxn][maxn],rig[maxn][maxn];
char a[51][51];
int n,m;

int main()
{
    while(~scanf("%d%d",&m,&n))
    {
        for(int i=0; i<m; i++)
        {
            scanf("%s",a[i]);
        }
        for(int i=0; i<m; i++)
        {
            for(int j=0; j<n; j++)
            {
                mat[i][j]=a[i][j]-'0';
            }
        }
        int ans=0;
        for(int i=0; i<m; i++)
        {
            int lo=-1,ro=n;
            for(int j=0; j<n; j++)
            {
                if(mat[i][j]==1)
                {
                    up[i][j]=lef[i][j]=0;
                    lo=j;
                }
                else
                {
                    up[i][j]=i==0?1:up[i-1][j]+1;
                    lef[i][j]=i==0?lo+1:max(lef[i-1][j],lo+1);
                }
            }
            for(int j=n-1; j>=0; j--)
            {
                if(mat[i][j]==1)
                {
                    rig[i][j]=n;
                    ro=j;
                }
                else
                {
                    rig[i][j]=i==0?ro-1:min(rig[i-1][j],ro-1);
                    ans=max(ans,up[i][j]*2+2*(rig[i][j]-lef[i][j]+1));
                }
            }
        }
        printf("%d\n",ans);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值