[Codeforces 979E] Kuro and Topological Parity

题目链接: http://codeforces.com/problemset/problem/979/E

题目大意: 给出n个点, 每个点被染成了白色或黑色或未被染色, 可以往图中加入任意条编号小的指向编号大的有向边, 定义交错路径为一条路径上交错出现黑点白点的路径, 求使得图中交错路径数的奇偶性满足性质p的方案数模 109+7 10 9 + 7 (n50) ( n ≤ 50 )

思路1: O(n4) O ( n 4 )
考虑dp, f[i][w0][w1][b0]表示的是考虑到前i个点, 现在有w0个以其结尾的交错路径数为偶数的白点, w1个以其结尾的交错路径数为奇数的白点, 同理有b0, b1对应黑点, b1=i-w0-w1-b0。 考虑第i+1个点染白色, 那么他将产生方案数使得w0+1或是w1+1, 首先光第i+1这一个点, 是有一条交错路径就是他自己, 然后我们可以知道w0, w1和b0, 无论和第i+1个点和这三种点的连边关系是怎样的, 都不会改变该点的交错路径数的奇偶性, 故两种转移都有一个系数 2(w0+w1+b0) 2 ( w 0 + w 1 + b 0 ) , 最后考虑b1这种点, 如果挑出奇数个连边则转移到w0+1, 挑出偶数个连边则转移到w1+1, 已知这两种情况的方案数在b1不为0的情况下是对半分的。 然后染成黑点的情况同理。 最后计算f[n][w0][w1][b0]中 (w1+b1) ( w 1 + b 1 ) 的和。

Code1:

#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;

#define ll long long

const int N = 60;
const int mo = (int)1e9 + 7;

int n, p, a[N];
ll pw[N], f[N][N][N][N];

int main(){

    pw[0] = 1;
    for (int i = 1; i < N; i ++)
        pw[i] = pw[i - 1] * 2 % mo;

    scanf("%d%d", &n, &p);
    for (int i = 1; i <= n; i ++)
        scanf("%d", a + i);

    f[0][0][0][0] = 1;
    for (int i = 1; i <= n; i ++)
        for (int w0 = 0; w0 <= i - 1; w0 ++)
            for (int w1 = 0; w1 <= i - 1 - w0; w1 ++)
                for (int b0 = 0; b0 <= i - 1 - w0 - w1; b0 ++){
                    int b1 = i - 1 - w0 - w1 - b0;
                    if (a[i] != 1){ // white
                        if (b1){
                            (f[i][w0][w1+1][b0] += f[i-1][w0][w1][b0] * pw[w0+w1+b0+b1-1] % mo) %= mo;
                            (f[i][w0+1][w1][b0] += f[i-1][w0][w1][b0] * pw[w0+w1+b0+b1-1] % mo) %= mo;
                        }
                        else{
                            (f[i][w0][w1+1][b0] += f[i-1][w0][w1][b0] * pw[w0+w1+b0] % mo) %= mo;
                        }
                    }
                    if (a[i] != 0){ // black
                        if (w1){
                            (f[i][w0][w1][b0] += f[i-1][w0][w1][b0] * pw[b0+b1+w0+w1-1] % mo) %= mo;
                            (f[i][w0][w1][b0+1] += f[i-1][w0][w1][b0] * pw[b0+b1+w0+w1-1] % mo) %= mo;
                        }
                        else{
                            (f[i][w0][w1][b0] += f[i-1][w0][w1][b0] * pw[b0+b1+w0] % mo) %= mo;
                        }
                    }
                }

    ll ans = 0;
    for (int w0 = 0; w0 <= n; w0 ++)
        for (int w1 = 0; w1 <= n - w0; w1 ++)
            for (int b0 = 0; b0 <= n - w0 - w1; b0 ++){
                int b1 = n - w0 - w1 - b0;
                if ((w1 + b1) % 2 == p) (ans += f[n][w0][w1][b0]) %= mo;
            }

    printf("%lld\n", ans);
    return 0;
}

思路2: O(n) O ( n )
首先w0, b0是可以合并的, 然后我们发现在转移过程中, 对于白点, 如果存在b1, 则两种情况数是相等的, 即 2i 2 i 对半分。 所以我们把dp的状态改为记录,考虑到前i个点, w1+b1的奇偶性, 是否有b1类型的点, 是否有w1类型的点。 然后按之前的思路一样写一遍即可。

#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;

#define ll long long

const int N = 60;
const int mo = (int)1e9 + 7;

int n, p, a[N];
ll pw[N], f[N][3][3][3];

int main(){

    pw[0] = 1;
    for (int i = 1; i < N; i ++)
        pw[i] = pw[i - 1] * 2 % mo;

    scanf("%d%d", &n, &p);
    for (int i = 1; i <= n; i ++)
        scanf("%d", a + i);

    f[0][0][0][0] = 1;
    for (int i = 1; i <= n; i ++)
        for (int wb1 = 0; wb1 <= 1; wb1 ++)
            for (int hasb1 = 0; hasb1 <= 1; hasb1 ++)
                for (int hasw1 = 0; hasw1 <= 1; hasw1 ++){
                    if (a[i] != 1){ // white
                        if (hasb1){
                            (f[i][wb1][hasb1][hasw1] += f[i-1][wb1][hasb1][hasw1] * pw[i-2] % mo) %= mo;
                            (f[i][wb1^1][hasb1][hasw1|1] += f[i-1][wb1][hasb1][hasw1] * pw[i-2] % mo) %= mo;
                        }
                        else{
                            (f[i][wb1^1][0][hasw1|1] += f[i-1][wb1][0][hasw1] * pw[i-1] % mo) %= mo;
                        }
                    }
                    if (a[i] != 0){ // black
                        if (hasw1){
                            (f[i][wb1][hasb1][hasw1] += f[i-1][wb1][hasb1][hasw1] * pw[i-2] % mo) %= mo;
                            (f[i][wb1^1][hasb1|1][hasw1] += f[i-1][wb1][hasb1][hasw1] * pw[i-2] % mo) %= mo;
                        }
                        else{
                            (f[i][wb1^1][hasb1|1][hasw1] += f[i-1][wb1][hasb1][hasw1] * pw[i-1] % mo) %= mo;
                        }
                    }
                }

    ll ans = 0;
    for (int hasb1 = 0; hasb1 <= 1; hasb1 ++)
        for (int hasw1 = 0; hasw1 <= 1; hasw1 ++){
            (ans += f[n][p][hasb1][hasw1]) %= mo;
        }

    printf("%lld\n", ans);
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值