题目大意:
给出一个棋盘,询问最多可以放置多少车。棋盘上还会有若干墙,可以阻隔。
分析:
有点类似八皇后的问题,不同的是这个不用考虑斜行,但是要考虑到墙的存在。由于数据量不大,用简单的回溯法就可以解决了。
这道题第一次做的时候WA了许多次,然后也找不到错在哪。后来做第二次的时候终于AC了,同时也想到了问题出在了哪里。第一次处理墙的时候,是把当前找到的点的右面和下面非墙的部分都标记为访问,然后回溯的话再把当前点的左方和前方相对应的部分标记为非访问。这样做其实是错误的,原因是在回溯的时候可能会多把坐标标记为非访问,比如下面有个点被重复标记了两次已访问,但是在回溯的时候只一次就可以标记成非访问。这样回溯时候的重复导致了错误。
后来也想到了改正的方法,就是递归的时候++,回溯的时候--。 - -
第二次做就简单的换了一种想法,处理墙的时候不用标记右下访问,然后回溯什么的。dfs时候只需判断它当前点是否合法,就是检查当前点的上方和左方,这样处理简单的多,回溯也不需要什么再判断的了。
#include<algorithm>
#include<cmath>
#include<cstring>
#include<string>
#include<cstdio>
#include<iostream>
using namespace std;
int n;
int vis[110][110];
int wall[110][110];
int ans=0;
int tot=0;
void dfs(int xx,int yy)
{
if(tot>ans)
ans=tot;
for(int i=0; i<n; i++)
{
for(int j=0; j<n; j++)
{
if(i<xx)
continue;
if(i==xx&&j<yy)
continue;
if(vis[i][j])
continue;
int okx=1,oky=1;
for(int s=i-1; s>=0; s--)
{
if(wall[s][j])
{
okx=1;
break;
}
if(vis[s][j])
{
okx=0;
break;
}
}
for(int s=j-1;s>=0;s--)
{
if(wall[i][s])
{
oky=1;
break;
}
if(vis[i][s])
{
oky=0;
break;
}
}
if(okx&&oky)
{
vis[i][j]=1;
tot++;
if(j==n-1)
dfs(i+1,0);
else
dfs(i,j+1);
tot--;
vis[i][j]=0;
}
}
}
}
int main()
{
while(cin>>n&&n!=0)
{
memset(wall,0,sizeof(vis));
memset(vis,0,sizeof(vis));
char ch;
ans=tot=0;
for(int i=0; i<n; i++)
{
for(int j=0; j<n; j++)
{
cin>>ch;
if(ch=='X')
{
vis[i][j]=1;
wall[i][j]=1;
}
}
}
dfs(0,0);
cout<<ans<<endl;
}
return 0;
}