[Leetcode]Container With Most Water

Given n non-negative integers a1a2, ..., an, where each represents a point at coordinate (iai). n vertical lines are drawn such that the two endpoints of line i is at (iai) and (i, 0). Find two lines, which together with x-axis forms a container, such that the container contains the most water.

public class Solution {
 
   public int maxArea(int[] height) {
    int ans = 0; 
    int low = 0, high = height.length - 1; 
    while(low < high){
      ans = Math.max(ans, (high-low)*Math.min(height[high], height[low]));
      if(height[low] < height[high]){
        low ++; 
      }
      else high --; 
    }
    return ans; 
  }
}

Here is the proof. Proved by contradiction:

Suppose the returned result is not the optimal solution. Then there must exist an optimal solution, say a container with aol and aor (left and right respectively), such that it has a greater volume than the one we got. Since our algorithm stops only if the two pointers meet. So, we must have visited one of them but not the other. WLOG, let's say we visited aol but not aor. When a pointer stops at a_ol, it won't move until

  • The other pointer also points to aol. In this case, iteration ends. But the other pointer must have visited aor on its way from right end to aol. Contradiction to our assumption that we didn't visit aor.

  • The other pointer arrives at a value, say arr, that is greater than aol before it reaches aor. In this case, we does move aol. But notice that the volume of aol and arr is already greater than aol and aor (as it is wider and heigher), which means that aol and aor is not the optimal solution -- Contradiction!

Both cases arrive at a contradiction.



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值