- 博客(7)
- 收藏
- 关注
原创 深度学习-超参数和参数个人理解
参数:就是模型可以根据数据可以自动学习出的变量,应该就是参数。比如,深度学习的权重,偏差等超参数:就是用来确定模型的一些参数,超参数不同,模型是不同的(这个模型不同的意思就是有微小的区别,比如假设都是CNN模型,如果层数不同,模型不一样,虽然都是CNN模型哈。),超参数一般就是根据经验确定的变量。在深度学习中,超参数有:学习速率,迭代次数,层数,每层神经元的个数等等。...
2018-11-28 20:59:09 1387
原创 监督学习-标记编码处理
对于训练数据上的label,有的可能是单词有的可能数字,若为单词我们需要转化为数字,以便算法更好的进行操作处理例如:对于汽车数据的标记class为{ "奥迪","宝马","马自达","本田"}则有input_class = { "奥迪","宝马","马自达","本田"}完整Demo:from sklearn import p
2018-10-22 22:51:08 556
原创 机器学习之数据预处理--独热编码(One-Hot)
某个样本的特征有多个特征。描述某个样本是由多个特征来处理例如:对于Bengio这个人描述为:(男、美国、一米八)对于上述特征每个特征有不同的状态位,例如性别有男女之分,其特征值都是离散的非连续值的无序值。为了将其连续有序化。则采用独热编码方式。什么是独热编码(One-Hot)?One-Hot编码,又称为一位有效编码,主要是采用N位状态寄存器来对N个状态进行编码,每个状态都由他独立的...
2018-10-22 22:33:50 892 1
原创 非pip安装机器学习包
1.先卸责原来安装包以安装sklearn及依赖包为例子pip uninstall scikit-learnpip uninstall numpypip uninstall scipypip uninstall matplotlib2.到以下镜像网站找到需要的包http://www.lfd.uci.edu/~gohlke/pythonlibs/#scipyhttp://www...
2018-10-20 23:53:13 201
原创 Machine Learning-过拟合和欠拟合问题
过拟合(训练样本自身特点及非一般特性当作重要特性)模型学习的太好,记住了样本的非一般特性。个人理解为比如对人的特征(鼻、耳、嘴等)学习效果良好。假如训练数据为黄人和黑人的样本图片。模型可以在训练数据表现出色,根据特征进行分类。此时过拟合就是指训练过程中记着一些非重要特征。例如,黄人和黑人脚趾甲长度(这为非一般特征),从而预测新样本时。原本可以根据一般特征很轻易的预测是否黄种人。但是由于模型过于...
2018-09-27 14:43:43 219
原创 python实现MIT-BIH数据读取及图形绘制
每条带有一个hea文件及mat文件,mat文件存储了波形信息,而hea文件存储了头信息以下为matlab实现mat数据转换为txt格式PATH= 'D:\Data\sample2017\validation'; % path, where data are saved PATH1='D:\Data\sample2017\validation\'PATHmat = strcat(...
2018-06-26 13:20:24 6319 2
原创 TensorBoard可视化命令
import tensorflow as tfimport numpy as npdef add_layer(inputs, in_size, out_size, n_layer, activation_function=None): layer_name = 'layer%s' % n_layer with tf.name_scope("layer"): w...
2018-06-19 15:43:01 2842
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人