题目链接:HDU 1142
题目大意:寻找一共有多少条符合题意的路。能够从点A走到点B的要求是:点A到终点的最短路 > 点B到终点的最短路。 也就是说:从终点出发,求每一个点的最短路,然后那些最短路的值记录起来,作为能否通过的判断条件。最后用记忆化搜索来搜索出一共多少条符合要求的路。普通的dfs是超时的,bfs是超内存的。
最短路的话用dijstra或SPFA算法随便搞。用dijstra速度要略胜一筹,用SPFA的时候,姿势不够优美,直接粘贴的SPFA的模板,然后模板里的maxn=105,忘记改了,然后TLE(竟然不是RE)
最短路跑出来,就可以用记忆化搜索搞了。
dijstra+堆优化+记忆化搜索
#include<iostream>
#include<queue>
#include<vector>
#include<cstdio>
using namespace std;
const int maxn=1005,inf=1<<29;
struct edge{int to,cost;};
struct node
{
int len,v;
friend bool operator <(node x,node y)
{
return x.len>y.len;
}
};
int d[maxn],dp[maxn];
int n,m,s;
vector<edge>G[maxn];
void Dijkstra()
{
priority_queue<node>q;
fill(d,d+maxn,inf);d[s]=0;
node t;
t.len=0;t.v=s;
q.push(t);
while(q.size())
{
t=q.top();q.pop();
if(d[t.v]<t.len) continue;
for(int i=0;i<G[t.v].size();i++)
{
edge e=G[t.v][i];
if(d[e.to]>d[t.v]+e.cost)
{
d[e.to]=d[t.v]+e.cost;
node temp={d[e.to],e.to};
q.push(temp);
}
}
}
}
int dfs(int now)
{
if(dp[now]) return dp[now];
if(now==2) return 1;
for(int i=0;i<G[now].size();i++)
{
int next=G[now][i].to;
if(d[now]>d[next]) dp[now]+=dfs(next);
}
return dp[now];
}
int main()
{
//while(cin>>n>>m&&(n+m))
while(~scanf("%d",&n),n)
{
scanf("%d",&m);
for(int i=0;i<=n;i++) G[i].clear();
for(int i=0;i<m;i++)
{
int a,b,w;
edge t,rt;
scanf("%d%d%d",&a,&b,&w);
//cin>>a>>b>>w;
t.to=b;t.cost=w;
rt.to=a;rt.cost=w;
G[a].push_back(t);
G[b].push_back(rt);
}
s=2;
Dijkstra();
fill(dp,dp+maxn,0);
cout<<dfs(1)<<endl;
}
return 0;
}
SPFA加记忆化搜索
#include<iostream>
#include<queue>
#include<vector>
#include<cstdio>
using namespace std;
const int maxn=1005,inf=1<<29;
struct edge{int to,cost;};
int d[maxn],vis[maxn];
int n,m,s;
int dp[maxn];
vector<edge>G[maxn];
void SFPA()
{
fill(d,d+maxn,inf);d[s]=0;
fill(vis,vis+maxn,0);
queue<int> q;
q.push(s);
while(!q.empty())
{
int u=q.front();
q.pop();
vis[u]=0;
for(int i=0;i<G[u].size();i++)
{
int v=G[u][i].to,len=G[u][i].cost;
if(d[v]>d[u]+len)
{
d[v]=d[u]+len;
if(vis[v]==0)
{
vis[v]=1;
q.push(v);
}
}
}
}
}
int dfs(int u)
{
if(dp[u]) return dp[u];
if(u==2) return 1;
for(int i=0;i<G[u].size();i++)
{
int v=G[u][i].to;
if(d[v]<d[u]) dp[u]+=dfs(v);
}
return dp[u];
}
int main()
{
//while(cin>>n>>m&&(n+m))
while(~scanf("%d",&n),n)
{
scanf("%d",&m);
for(int i=0;i<=n;i++) G[i].clear();
for(int i=0;i<m;i++)
{
int a,b,w;
edge t,rt;
scanf("%d%d%d",&a,&b,&w);
//cin>>a>>b>>w;
t.to=b;t.cost=w;
rt.to=a;rt.cost=w;
G[a].push_back(t);
G[b].push_back(rt);
}
s=2;
fill(dp,dp+maxn,0);
SFPA();
printf("%d\n",dfs(1));
//cout<<d[n]<<endl;
}
return 0;
}