A. 青云的服务器密钥
算法:分析规律
1)求出出现过字符的最小次数。
2)如果只出现过这一种字符,很显然,答案是n*(n-1)/2;
3)如果出现过得字符不止一种,那么总是可以找到一种排,使得最小值为n-1
例如 只出现过a,b各3次。可以先放置a,然后放置其他字符,最后放置其余的a,即abbbaa。对于一般的情况,设最小次数为m,不妨假设这个字符为a。先放置一个a,然后放置其他字符,最后放置剩余的m-1个a。根据求kmp(看毛片233)算法的next可知,a*****aaaa...a的next数组值为00000011111....1,所以sum{next[i]},其中i属于[2,n],n为字符串长度,和为m-1.
AC代码:
#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<ctime>
#include<iostream>
#include<algorithm>
#include<sstream>
#include<fstream>
#include<vector>
#include<map>
#include<stack>
#include<list>
#include<set>
#include<queue>
#define LL long long
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1 | 1
using namespace std;
int main()
{
int t;
//freopen("in.txt","r",stdin);
cin>>t;
while(t--)
{
int x,y=100,s=0;
for(int i=0;i<26;i++)
{
cin>>x;
s+=x;
if(x) y=min(y,x);
}
if(y==s) cout<<(y*(y-1)/2)<<endl;
else cout<<y-1<<endl;
}
return 0;
}
B. 青云的机房组网方案(简单)
算法:先用bfs以O(n^2)的复杂度暴力出所有点对的距离。
然后以O(n^2)的复杂度暴力每个点对是否互质,互质就加上去。
复杂度O(n^2)。只能对付<=1000的数据量。更高的数据量没想出来,估计要用树形DP或者线段树之类的数据结构了吧。
AC代码:
#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<ctime>
#include<iostream>
#include<algorithm>
#include<sstream>
#include<fstream>
#include<vector>
#include<map>
#include<stack>
#include<list>
#include<set>
#include<queue>
#define LL long long
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1 | 1
/*
正反循环的宏定义
*/
#define ffr(i,x,y) for(int i=(x),_en=(y);i<=_en;i++)
#define rff(i,x,y) for(int i=(x),_en=(y);i>=_en;i--)
#define clr(f,z) memset(f,z,sizeof(f))
using namespace std;
const int maxn=505,inf=1<<29;
int n,a[maxn],vis[maxn],dis[maxn][maxn];
vector<int>G[maxn];
int gcd(int x,int y)
{
return y==0?x:gcd(y,x%y);
}
struct node
{
int x,d;
node(int x,int d):x(x),d(d){}
};
void bfs(int rt)
{
queue<node>q;
q.push(node(rt,0));
fill(vis,vis+maxn,0);
vis[rt]=1;
while(q.size())
{
node now=q.front();q.pop();
for(int i=0;i<G[now.x].size();i++)
{
int next=G[now.x][i];
if(vis[next]==0)
{
vis[next]=1;
q.push(node(next,now.d+1));
dis[rt][next]=now.d+1;
}
}
}
}
int main()
{
//freopen("in.txt","r",stdin);
while(cin>>n)
{
for(int i=1;i<=n;i++) cin>>a[i],G[i].clear();
for(int i=1;i<n;i++)
{
int x,y;
cin>>x>>y;
G[x].push_back(y);
G[y].push_back(x);
}
for(int i=1;i<=n;i++) bfs(i);
int ans=0;
for(int i=1;i<=n;i++)
for(int j=i+1;j<=n;j++)
if(gcd(a[i],a[j])==1) ans+=dis[i][j];
cout<<ans<<endl;
}
return 0;
}