1 Hive基本概念
1.1 什么是Hive
》》1: hive简介
Hive:由Facebook开源用于解决海量结构化日志的数据统计工具
。
Hive是基于Hadoop的一个数据仓库工具
,可以将结构化的数据文件映射为一张表
,并提供类SQL查询功能
。
》》2:Hive本质:将HQL转化成MapReduce程序
(1)Hive处理的数据存储在HDFS
(2)Hive分析数据底层的实现是MapReduce
(3)执行程序运行在Yarn上
1.2Hive的优缺点
1.2.1 优点
(1)操作接口采用类SQL语法
,提供快速开发的能力(简单、容易上手)。
(2)避免了去写MapReduce,减少开发人员的学习成本。
(3)Hive的执行延迟比较高,因此Hive常用于数据分析,对实时性要求不高的场合
。
(4)Hive优势在于处理大数据
,对于处理小数据没有优势,因为Hive的执行延迟比较高。
(5)Hive支持用户自定义函数,用户可以根据自己的需求来实现自己的函数。
1.2.2 缺点
》》1:Hive的HQL表达能力有限
(1)迭代式算法无法表达
(2)数据挖掘方面不擅长,由于MapReduce数据处理流程的限制,效率更高的算法却无法实现。
》》2:Hive的效率比较低
(1)Hive自动生成的MapReduce作业,通常情况下不够智能化
(2)Hive调优比较困难,粒度较粗
1.3 Hive架构原理
》》1:用户接口:Client
CLI(command-line interface)、JDBC/ODBC(jdbc访问hive)、WEBUI(浏览器访问hive)
》》2:元数据:Metastore
元数据包括:表名、表所属的数据库(默认是default)、表的拥有者、列/分区字段、表的类型(是否是外部表)、表的数据所在目录等;
默认存储在自带的derby数据库中,推荐使用MySQL存储Metastore
》》3:Hadoop
使用HDFS进行存储,使用MapReduce进行计算。
》》4:驱动器:Driver
(1)解析器(SQL Parser)
:将SQL字符串转换成抽象语法树AST,这一步一般都用第三方工具库完成,比如antlr;对AST进行语法分析
,比如表是否存在、字段是否存在、SQL语义是否有误。
(2)编译器(Physical Plan)
:将AST编译生成逻辑执行计划
。
(3)优化器(Query Optimizer)
:对逻辑执行计划进行优化
。
(4)执行器(Execution)
:把逻辑执行计划转换成可以运行的物理计划。对于Hive来说,就是MR/Spark
。
Hive通过给用户提供的一系列交互接口,接收到用户的指令(SQL),使用自己的Driver,结合元数据(MetaStore),将这些指令翻译成MapReduce,提交到Hadoop中执行,最后,将执行返回的结果输出到用户交互接口。
1.4 Hive和数据库比较
由于 Hive 采用了类似SQL 的查询语言 HQL(Hive Query Language),因此很容易将 Hive 理解为数据库。其实从结构上来看,Hive 和数据库除了拥有类似的查询语言,再无类似之处
。本文将从多个方面来阐述 Hive 和数据库的差异。数据库可以用在 Online 的应用中,但是Hive 是为数据仓库而设计的,清楚这一点,有助于从应用角度理解 Hive 的特性。
1.4.1 查询语言
由于SQL被广泛的应用在数据仓库中,因此,专门针对Hive的特性设计了类SQL的查询语言HQL。熟悉SQL开发的开发者可以很方便的使用Hive进行开发。
1.4.2 数据更新
由于Hive是针对数据仓库应用设计的,而数据仓库的内容是读多写少的。因此,Hive中不建议对数据的改写,所有的数据都是在加载的时候确定好的。而数据库中的数据通常是需要经常进行修改的,因此可以使用 INSERT INTO … VALUES 添加数据,使用 UPDATE … SET修改数据。
1.4.3 执行延迟
Hive 在查询数据的时候,由于没有索引,需要扫描整个表,因此延迟较高。另外一个导致 Hive 执行延迟高的因素是 MapReduce框架。由于MapReduce 本身具有较高的延迟,因此在利用MapReduce 执行Hive查询时,也会有较高的延迟。相对的,数据库的执行延迟较低。当然,这个低是有条件的,即数据规模较小,当数据规模大到超过数据库的处理能力的时候,Hive的并行计算显然能体现出优势。
1.4.4 数据规模
由于Hive建立在集群上并可以利用MapReduce进行并行计算,因此可以支持很大规模的数据;对应的,数据库可以支持的数据规模较小。
2 Hive安装
2.1 Hive安装地址
》》1:Hive官网地址
http://hive.apache.org/
》》2:文档查看地址
https://cwiki.apache.org/confluence/display/Hive/GettingStarted
》》3:下载地址
http://archive.apache.org/dist/hive/
》》4:github地址
https://github.com/apache/hive
2.2Hive安装部署
2.2.1 安装Hive
》》1:把apache-hive-3.1.2-bin.tar.gz上传到linux的/opt/software目录下
》》2:解压apache-hive-3.1.2-bin.tar.gz到/opt/module/目录下面
[dev1@hadoop102 software]$ tar -zxvf /opt/software/apache-hive-3.1.2-bin.tar.gz -C /opt/module/
》》3:修改apache-hive-3.1.2-bin.tar.gz的名称为hive
[dev1@hadoop102 software]$ mv /opt/module/apache-hive-3.1.2-bin/ /opt/module/hive
》》4:修改/etc/profile.d/my_env.sh,添加环境变量
[dev1@hadoop102 software]$ sudo vim /etc/profile.d/my_env.sh
》》5:添加内容
#HIVE_HOME
export HIVE_HOME=/opt/module/hive
export PATH=$PATH:$HIVE_HOME/bin
》》6:解决日志Jar包冲突
[dev1@hadoop102 software]$ mv $HIVE_HOME/lib/log4j-slf4j-impl-2.10.0.jar $HIVE_HOME/lib/log4j-slf4j-impl-2.10.0.bak
》》7:初始化元数据库
[dev1@hadoop102 hive]$ bin/schematool -dbType derby -initSchema
2.2.2 启动并使用Hive
》》1:启动Hive
[dev1@hadoop102 hive]$ bin/hive
》》2:使用Hive
hive> show databases;
hive> show tables;
hive> create table test(id int);
hive> insert into test values(1);
hive> select * from test;
》》3:在FinalShell窗口中开启另一个窗口开启Hive,在/tmp/dev1目录下监控hive.log文件
Caused by: ERROR XSDB6: Another instance of Derby may have already booted the database /opt/module/hive/metastore_db.
原因在于Hive默认使用的元数据库为derby,开启Hive之后就会占用元数据库,且不与其他客户端共享数据,所以我们需要将Hive的元数据地址改为MySQL。
2.3MySQL安装
》》1:检查当前系统是否安装过MySQL
[dev1@hadoop102 ~]$ rpm -qa|grep mariadb
mariadb-libs-5.5.56-2.el7.x86_64
//如果存在通过如下命令卸载
[dev1 @hadoop102 ~]$ sudo rpm -e --nodeps mariadb-libs
》》2:将MySQL安装包拷贝到/opt/software目录下
[dev1 @hadoop102 software]# ll
》》3:解压MySQL安装包
[dev1 @hadoop102 software]# tar -xf mysql-5.7.28-1.el7.x86_64.rpm-bundle.tar
》》4:在安装目录下执行rpm安装
[dev1 @hadoop102 software]$
sudo rpm -ivh mysql-community-common-5.7.28-1.el7.x86_64.rpm
sudo rpm -ivh mysql-community-libs-5.7.28-1.el7.x86_64.rpm
sudo rpm -ivh mysql-community-libs-compat-5.7.28-1.el7.x86_64.rpm
sudo rpm -ivh mysql-community-client-5.7.28-1.el7.x86_64.rpm
sudo rpm -ivh mysql-community-server-5.7.28-1.el7.x86_64.rpm
注意:按照顺序依次执行 如果Linux是最小化安装的,在安装mysql-community-server-5.7.28-1.el7.x86_64.rpm时可能会出现如下错误
[dev1@hadoop102 software]$ sudo rpm -ivh mysql-community-server-5.7.28-1.el7.x86_64.rpm
警告:mysql-community-server-5.7.28-1.el7.x86_64.rpm: 头V3 DSA/SHA1 Signature, 密钥 ID 5072e1f5: NOKEY
错误:依赖检测失败:
libaio.so.1()(64bit) 被 mysql-community-server-5.7.28-1.el7.x86_64 需要
libaio.so.1(LIBAIO_0.1)(64bit) 被 mysql-community-server-5.7.28-1.el7.x86_64 需要
libaio.so.1(LIBAIO_0.4)(64bit) 被 mysql-community-server-5.7.28-1.el7.x86_64 需要
通过yum安装缺少的依赖,然后重新安装mysql-community-server-5.7.28-1.el7.x86_64即可
[dev1@hadoop102 software] yum install -y libaio
》》5:删除/etc/my.cnf文件中datadir指向的目录下的所有内容,如果有内容的情况下:
查看datadir的值:
[mysqld]
datadir=/var/lib/mysql
删除/var/lib/mysql目录下的所有内容:
[dev1 @hadoop102 mysql]# cd /var/lib/mysql
[dev1 @hadoop102 mysql]# sudo rm -rf ./* //注意执行命令的位置
》》6:初始化数据库
[dev1 @hadoop102 opt]$ sudo mysqld --initialize --user=mysql
》》7:查看临时生成的root用户的密码
[dev1 @hadoop102 opt]$ sudo cat /var/log/mysqld.log
每个用户生成的都不一样
》》8:启动MySQL服务
[dev1 @hadoop102 opt]$ sudo systemctl start mysqld
》》9:登录MySQL数据库
[dev1 @hadoop102 opt]$ mysql -uroot -p
Enter password: 输入临时生成的密码
登录成功.
》》10:必须先修改root用户的密码,否则执行其他的操作会报错
mysql> set password = password("新密码");
》》11:修改mysql库下的user表中的root用户允许任意ip连接
mysql> update mysql.user set host='%' where user='root';
mysql> flush privileges;
2.4 Hive元数据配置到MySQL
2.4.1 拷贝驱动
将MySQL的JDBC驱动拷贝到Hive的lib目录下
[dev1@hadoop102 software]$ cp /opt/software/mysql-connector-java-5.1.37.jar $HIVE_HOME/lib
2.4.2 配置Metastore到MySQL
》》1:在$HIVE_HOME/conf目录下新建hive-site.xml文件
[dev1@hadoop102 software]$ vim $HIVE_HOME/conf/hive-site.xml
添加如下内容
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
<!-- jdbc连接的URL -->
<property>
<name>javax.jdo.option.ConnectionURL</name>
<value>jdbc:mysql://hadoop102:3306/metastore?useSSL=false</value>
</property>
<!-- jdbc连接的Driver-->
<property>
<name>javax.jdo.option.ConnectionDriverName</name>
<value>com.mysql.jdbc.Driver</value>
</property>
<!-- jdbc连接的username-->
<property>
<name>javax.jdo.option.ConnectionUserName</name>
<value>root</value>
</property>
<!-- jdbc连接的password -->
<property>
<name>javax.jdo.option.ConnectionPassword</name>
<value>000000</value>
</property>
<!-- Hive元数据存储版本的验证 -->
<property>
<name>hive.metastore.schema.verification</name>
<value>false</value>
</property>
<!--元数据存储授权-->
<property>
<name>hive.metastore.event.db.notification.api.auth</name>
<value>false</value>
</property>
<!-- Hive默认在HDFS的工作目录 -->
<property>
<name>hive.metastore.warehouse.dir</name>
<value>/user/hive/warehouse</value>
</property>
</configuration>
》》3:登陆MySQL
[dev1@hadoop102 software]$ mysql -uroot -p000000
》》4:新建Hive元数据库
mysql> create database metastore;
mysql> quit;
》》5: 初始化Hive元数据库
[dev1@hadoop102 software]$ schematool -initSchema -dbType mysql -verbose
2.4.3 再次启动Hive
》》1:启动Hive
[dev1@hadoop102 hive]$ bin/hive
》》2:使用Hive
hive> show databases;
hive> show tables;
hive> create table test (id int);
hive> insert into test values(1);
hive> select * from test;
》》3:在FinalShell窗口中开启另一个窗口开启Hive
hive> show databases;
hive> show tables;
hive> select * from aa;
2.5 使用元数据服务的方式访问Hive
》》1:在hive-site.xml文件中添加如下配置信息
<!-- 指定存储元数据要连接的地址 -->
<property>
<name>hive.metastore.uris</name>
<value>thrift://hadoop102:9083</value>
</property>
》》2:启动metastore
[dev1@hadoop202 hive]$ hive --service metastore
2020-04-24 16:58:08: Starting Hive Metastore Server
注意: 启动后窗口不能再操作,需打开一个新的shell窗口做别的操作
》》3:启动 hive
[dev1@hadoop202 hive]$ bin/hive
2.6 使用JDBC方式访问Hive
》》1:在hive-site.xml文件中添加如下配置信息
<!-- 指定hiveserver2连接的host -->
<property>
<name>hive.server2.thrift.bind.host</name>
<value>hadoop102</value>
</property>
<!-- 指定hiveserver2连接的端口号 -->
<property>
<name>hive.server2.thrift.port</name>
<value>10000</value>
</property>
》》2:启动hiveserver2
[dev1@hadoop102 hive]$ bin/hive --service
hiveserver2
》》3:启动beeline客户端(需要多等待一会)
[dev1@hadoop102 hive]$ bin/beeline -u jdbc:hive2://hadoop102:10000 -n dev1
》》4:看到如下界面
Connecting to jdbc:hive2://hadoop102:10000
Connected to: Apache Hive (version 3.1.2)
Driver: Hive JDBC (version 3.1.2)
Transaction isolation: TRANSACTION_REPEATABLE_READ
Beeline version 3.1.2 by Apache Hive
0: jdbc:hive2://hadoop102:10000>
》》5:编写hive服务启动脚本(了解)
(1)前台启动的方式导致需要打开多个shell窗口,可以使用如下方式后台方式启动
nohup: 放在命令开头,表示不挂起,也就是关闭终端进程也继续保持运行状态
/dev/null:是Linux文件系统中的一个文件,被称为黑洞,所有写入改文件的内容都会被自动丢弃
2>&1 : 表示将错误重定向到标准输出上
&: 放在命令结尾,表示后台运行
一般会组合使用:
nohup [xxx命令操作]> file 2>&1&
表示将xxx命令运行的结果输出到file中,并保持命令启动的进程在后台运行。
如上命令不要求掌握。
[dev1@hadoop202 hive]$ nohup hive --service metastore 2>&1 &
[dev1@hadoop202 hive]$ nohup hive --service hiveserver2 2>&1 &
(2)为了方便使用,可以直接编写脚本来管理服务的启动和关闭
[dev1@hadoop102 hive]$ vim $HIVE_HOME/bin/hiveservices.sh
内容如下:此脚本的编写不要求掌握。直接拿来使用即可。
#!/bin/bash
HIVE_LOG_DIR=$HIVE_HOME/logs
if [ ! -d $HIVE_LOG_DIR ]
then
mkdir -p $HIVE_LOG_DIR
fi
#检查进程是否运行正常,参数1为进程名,参数2为进程端口
function check_process()
{
pid=$(ps -ef 2>/dev/null | grep -v grep | grep -i $1 | awk '{print $2}')
ppid=$(netstat -nltp 2>/dev/null | grep $2 | awk '{print $7}' | cut -d '/' -f 1)
echo $pid
[[ "$pid" =~ "$ppid" ]] && [ "$ppid" ] && return 0 || return 1
}
function hive_start()
{
metapid=$(check_process HiveMetastore 9083)
cmd="nohup hive --service metastore >$HIVE_LOG_DIR/metastore.log 2>&1 &"
[ -z "$metapid" ] && eval $cmd || echo "Metastroe服务已启动"
server2pid=$(check_process HiveServer2 10000)
cmd="nohup hiveserver2 >$HIVE_LOG_DIR/hiveServer2.log 2>&1 &"
[ -z "$server2pid" ] && eval $cmd || echo "HiveServer2服务已启动"
}
function hive_stop()
{
metapid=$(check_process HiveMetastore 9083)
[ "$metapid" ] && kill $metapid || echo "Metastore服务未启动"
server2pid=$(check_process HiveServer2 10000)
[ "$server2pid" ] && kill $server2pid || echo "HiveServer2服务未启动"
}
case $1 in
"start")
hive_start
;;
"stop")
hive_stop
;;
"restart")
hive_stop
sleep 2
hive_start
;;
"status")
check_process HiveMetastore 9083 >/dev/null && echo "Metastore服务运行正常" || echo "Metastore服务运行异常"
check_process HiveServer2 10000 >/dev/null && echo "HiveServer2服务运行正常" || echo "HiveServer2服务运行异常"
;;
*)
echo Invalid Args!
echo 'Usage: '$(basename $0)' start|stop|restart|status'
;;
esac
(3) 添加执行权限
[dev1@hadoop102 hive]$ chmod +x $HIVE_HOME/bin/hiveservices.sh
(4)启动Hive后台服务
[dev1@hadoop102 hive]$ hiveservices.sh start
2.7 Hive常用交互命令
[dev1@hadoop102 hive]$ bin/hive -help
》》1:"-e"不进入hive的交互窗口执行sql语句
[dev1@hadoop102 hive]$ bin/hive -e "select id from student;"
》》2:"-f"执行脚本中sql语句
(1)在/opt/module/hive/下创建datas目录并在datas目录下创建hivef.sql文件
[dev1@hadoop102 datas]$ touch hivef.sql
(2)文件中写入正确的sql语句
select *from student;
(3)执行文件中的sql语句
[dev1@hadoop102 hive]$ bin/hive -f /opt/module/hive/datas/hivef.sql
(4)执行文件中的sql语句并将结果写入文件中
[dev1@hadoop102 hive]$ bin/hive -f /opt/module/hive/datas/hivef.sql > /opt/module/datas/hive_result.txt
2.8 Hive其他命令操作
》》1:退出hive窗口:
hive(default)>exit;
hive(default)>quit;
》》2:在hive cli命令窗口中如何查看hdfs文件系统
hive(default)>dfs -ls /;
》》3:查看在hive中输入的所有历史命令
(1)进入到当前用户的根目录 /root或/home/dev1
(2)查看. hivehistory文件
[dev1@hadoop102 ~]$ cat .hivehistory
2.9 Hive常见属性配置
2.9.1 Hive运行日志信息配置
》》1:Hive的log默认存放在/tmp/dev1/hive.log目录下(当前用户名下)
》》2:修改hive的log存放日志到/opt/module/hive/logs
(1)修改/opt/module/hive/conf/hive-log4j2.properties.template文件名称为
hive-log4j2.properties
[dev1@hadoop102 conf]$ pwd
/opt/module/hive/conf
[dev1@hadoop102 conf]$ mv hive-log4j2.properties.template hive-log4j2.properties
(2)在hive-log4j2.properties文件中修改log存放位置
hive.log.dir=/opt/module/hive/logs
2.9.2 打印 当前库 和 表头
在hive-site.xml中加入如下两个配置:
<property>
<name>hive.cli.print.header</name>
<value>true</value>
</property>
<property>
<name>hive.cli.print.current.db</name>
<value>true</value>
</property>
2.9.3 参数配置方式
》》1:查看当前所有的配置信息
hive>set;
》》2:参数的配置三种方式
(1)配置文件方式
默认配置文件:hive-default.xml
用户自定义配置文件:hive-site.xml
注意:用户自定义配置会覆盖默认配置
。另外,Hive也会读入Hadoop的配置,因为Hive是作为Hadoop的客户端启动的,Hive的配置会覆盖Hadoop的配置。配置文件的设定对本机启动的所有Hive进程都有效。
(2)命令行参数方式
启动Hive时,可以在命令行添加-hiveconf param=value来设定参数。
例如:
[dev1@hadoop103 hive]$ bin/hive -hiveconf mapred.reduce.tasks=10;
注意:仅对本次hive启动有效
查看参数设置:
hive (default)> set mapred.reduce.tasks;
(3)参数声明方式
可以在HQL中使用SET关键字设定参数
例如:
hive (default)> set mapred.reduce.tasks=100;
注意:仅对本次hive启动有效
。
查看参数设置
hive (default)> set mapred.reduce.tasks;
上述三种设定方式的优先级依次递增。即配置文件<命令行参数<参数声明
。注意某些系统级的参数,例如log4j相关的设定,必须用前两种方式设定,因为那些参数的读取在会话建立以前已经完成了。
3 Hive数据类型
3.1 基本数据类型
对于Hive的String类型相当于数据库的varchar类型,该类型是一个可变的字符串,不过它不能声明其中最多能存储多少个字符,理论上它可以存储2GB的字符数。
3.2 集合数据类型
Hive有三种复杂数据类型ARRAY、MAP 和 STRUCT。ARRAY和MAP与Java中的Array和Map类似,而STRUCT与C语言中的Struct类似,它封装了一个命名字段集合,复杂数据类型允许任意层次的嵌套。
》》1:案例实操
(1)基于上述数据结构,我们在Hive里创建对应的表,并导入数据。
创建本地测试文件test.txt
songsong,bingbing_lili,xiao song:18_xiaoxiao song:19,hui long guan_beijing
yangyang,caicai_susu,xiao yang:18_xiaoxiao yang:19,chao yang_beijing
注意:MAP,STRUCT和ARRAY里的元素间关系都可以用同一个字符表示,这里用"_"。
(2)Hive上创建测试表test
create table test(
name string,
friends array<string>,
children map<string, int>,
address struct<street:string, city:string>
)
row format delimited fields terminated by ','
collection items terminated by '_'
map keys terminated by ':'
lines terminated by '\n';
字段解释:
row format delimited fields terminated by ',' -- 列分隔符
collection items terminated by '_' --MAP STRUCT 和 ARRAY 的分隔符(数据分割符号)
map keys terminated by ':' -- MAP中的key与value的分隔符
lines terminated by '\n'; -- 行分隔符
(3)导入文本数据到测试表
load data local inpath '/opt/module/hive/datas/test.txt' into table test;
(4)查询test表中的数据
select * from test;
Hive使用JSON格式来表示其数据结构。
在Hive下访问的格式为
{
"name": "songsong",
"friends": ["bingbing" , "lili"] , //列表Array,
"children": { //键值Map,
"xiao song": 18 ,
"xiaoxiao song": 19
}
"address": { //结构Struct,
"street": "hui long guan",
"city": "beijing"
}
}
(5)访问三种集合列里的数据,以下分别是ARRAY,MAP,STRUCT
的访问方式
hive (default)> select friends[1],children['xiao song'],address.city from test
where name="songsong";
3.3 类型转化
Hive的原子数据类型是可以进行隐式转换的,类似于Java的类型转换,例如某表达式使用INT类型,TINYINT会自动转换为INT类型,但是Hive不会进行反向转化,例如,某表达式使用TINYINT类型,INT不会自动转换为TINYINT类型,它会返回错误,除非使用CAST操作。
》》1:隐式类型转换规则如下
(1)任何整数类型都可以隐式地转换为一个范围更广的类型,如TINYINT可以转换成INT,INT可以转换成BIGINT。
(2)所有整数类型、FLOAT和STRING类型都可以隐式地转换成DOUBLE。
(3)TINYINT、SMALLINT、INT都可以转换为FLOAT。
(4)BOOLEAN类型不可以转换为任何其它的类型。
》》2:可以使用CAST操作显示进行数据类型转换
例如CAST(‘1’ AS INT)将把字符串’1’ 转换成整数1;
如果强制类型转换失败,如执行CAST(‘X’ AS INT),表达式返回空值 NULL。
select '1'+2, cast('1'as int) + 2;
4 DDL数据定义
4.1 创建数据库
CREATE DATABASE [IF NOT EXISTS] database_name
[COMMENT database_comment]
[LOCATION hdfs_path]
[WITH DBPROPERTIES (property_name=property_value, ...)];
》》1:创建一个数据库,数据库在HDFS上的默认存储路径是/user/hive/warehouse/*.db。
hive (default)> create database db_hive;
》》2:避免要创建的数据库已经存在错误,增加if not exists判断。(标准写法)
hive (default)> create database db_hive;
FAILED: Execution Error, return code 1 from org.apache.hadoop.hive.ql.exec.DDLTask. Database db_hive already exists
hive (default)> create database if not exists db_hive;
》》3:创建一个数据库,指定数据库在HDFS上存放的位置
hive (default)> create database db_hive2 location '/db_hive2.db';
4.2 查询数据库
4.2.1 显示数据库
》》1:显示数据库
hive> show databases;
》》2:过滤显示查询的数据库
hive> show databases like 'db_hive*';
OK
db_hive
db_hive_1
4.2.2 查看数据库详情
》》1:显示数据库信息
hive> desc database db_hive;
OK
db_hive hdfs://hadoop102:9820/user/hive/warehouse/db_hive.db dev1USER
》》2:显示数据库详细信息,extended
hive> desc database extended db_hive;
OK
db_hive hdfs://hadoop102:9820/user/hive/warehouse/db_hive.db dev1USER
4.2.3 切换当前数据库
hive (default)> use db_hive;
4.3 修改数据库
用户可以使用ALTER DATABASE命令为某个数据库的DBPROPERTIES设置键-值对属性值,来描述这个数据库的属性信息。
hive (default)> alter database db_hive
set dbproperties('createtime'='20211111');
在hive中查看修改结果
hive> desc database extended db_hive;
db_name comment location owner_name owner_type parameters
db_hive hdfs://hadoop102:9820/user/hive/warehouse/db_hive.db dev1 USER {createtime=20170830}
4.4 删除数据库
》》1:删除空数据库
hive>drop database db_hive2;
》》2:如果删除的数据库不存在,最好采用 if exists判断数据库是否存在
hive> drop database db_hive;
FAILED: SemanticException [Error 10072]: Database does not exist: db_hive
hive> drop database if exists db_hive2;
》》3:如果数据库不为空,可以采用cascade命令,强制删除
hive> drop database db_hive;
FAILED: Execution Error, return code 1 from org.apache.hadoop.hive.ql.exec.DDLTask. InvalidOperationException(message:Database db_hive is not empty. One or more tables exist.)
hive> drop database db_hive cascade;
4.5 创建表
》》1:建表语法
CREATE [EXTERNAL] TABLE [IF NOT EXISTS] table_name
[(col_name data_type [COMMENT col_comment], ...)]
[COMMENT table_comment]
[PARTITIONED BY (col_name data_type [COMMENT col_comment], ...)]
[CLUSTERED BY (col_name, col_name, ...)
[SORTED BY (col_name [ASC|DESC], ...)] INTO num_buckets BUCKETS]
[ROW FORMAT row_format]
[STORED AS file_format]
[LOCATION hdfs_path]
[TBLPROPERTIES (property_name=property_value, ...)]
[AS select_statement]
》》2:字段解释说明
(1)CREATE TABLE 创建一个指定名字的表。如果相同名字的表已经存在,则抛出异常;用户可以用 IF NOT EXISTS 选项来忽略这个异常。
(2)EXTERNAL关键字可以让用户创建一个外部表,在建表的同时可以指定一个指向实际数据的路径(LOCATION),在删除表的时候,内部表的元数据和数据会被一起删除,而外部表只删除元数据,不删除数据。
(3)COMMENT:为表和列添加注释。
(4)PARTITIONED BY创建分区表
(5)CLUSTERED BY创建分桶表
(6)SORTED BY不常用,对桶中的一个或多个列另外排序
(7)
ROW FORMAT DELIMITED [FIELDS TERMINATED BY char] [COLLECTION ITEMS TERMINATED BY char]
[MAP KEYS TERMINATED BY char] [LINES TERMINATED BY char]
| SERDE serde_name [WITH SERDEPROPERTIES (property_name=property_value, property_name=property_value, ...)]
用户在建表的时候可以自定义SerDe或者使用自带的SerDe。如果没有指定ROW FORMAT 或者ROW FORMAT DELIMITED,将会使用自带的SerDe。在建表的时候,用户还需要为表指定列,用户在指定表的列的同时也会指定自定义的SerDe,Hive通过SerDe确定表的具体的列的数据。
SerDe是Serialize/Deserilize的简称, hive使用Serde进行行对象的序列与反序列化
。
(8)STORED AS指定存储文件类型
常用的存储文件类型:SEQUENCEFILE(二进制序列文件)、TEXTFILE(文本)、RCFILE(列式存储格式文件)
如果文件数据是纯文本,可以使用STORED AS TEXTFILE。如果数据需要压缩,使用 STORED AS SEQUENCEFILE。
(9)LOCATION :指定表在HDFS上的存储位置。
(10)AS:后跟查询语句,根据查询结果创建表。
(11)LIKE允许用户复制现有的表结构,但是不复制数据。
4.5.1 管理表
》》1:理论
默认创建的表都是所谓的管理表
,有时也被称为内部表。因为这种表,Hive会(或多或少地)控制着数据的生命周期。
Hive默认情况下会将这些表的数据存储在由配置项hive.metastore.warehouse.dir
(例如,/user/hive/warehouse)所定义的目录的子目录下。
当我们删除一个管理表时,Hive也会删除这个表中数据。管理表不适合和其他工具共享数据
。
》》2:案例实操
(0)原始数据
1001 ss1
1002 ss2
1003 ss3
1004 ss4
(1)普通创建表
create table if not exists student(
id int, name string
)
row format delimited fields terminated by '\t'
stored as textfile
location '/user/hive/warehouse/student';
(2)根据查询结果创建表(查询的结果会添加到新创建的表中)
create table if not exists student2 as select id, name from student;
(3)根据已经存在的表结构创建表
create table if not exists student3 like student;
(4)查询表的类型
hive (default)> desc formatted student2;
Table Type: MANAGED_TABLE
4.5.2 外部表
》》1:理论
因为表是外部表,所以Hive并非认为其完全拥有这份数据。
删除该表并不会删除掉这份数据,不过描述表的元数据信息会被删除掉
。
》》2:管理表和外部表的使用场景
每天将收集到的网站日志定期流入HDFS文本文件。
在外部表(原始日志表)
的基础上做大量的统计分析,
用到的中间表、结果表使用内部表存储
,数据通过SELECT+INSERT进入内部表。
3)案例实操
分别创建部门外部表,并向表中导入数据。
(0)原始数据
/opt/module/hive/datas/dept.txt
10 Java 1700
20 H5 1800
30 Python 1900
40 bigData 1700
(1)建表语句,创建外部表
创建部门表
create external table if not exists dept(
deptno int,
dname string,
loc int
)
row format delimited fields terminated by '\t';
(2)查看创建的表
hive (default)>show tables;
(3)查看表格式化数据
hive (default)> desc formatted dept;
Table Type: EXTERNAL_TABLE
(4)删除外部表
hive (default)> drop table dept;
外部表删除后,hdfs中的数据还在,但是metadata中dept的元数据已被删除