布线问题
时间限制:
1000 ms | 内存限制:
65535 KB
难度:
4
-
描述
-
南阳理工学院要进行用电线路改造,现在校长要求设计师设计出一种布线方式,该布线方式需要满足以下条件:
1、把所有的楼都供上电。
2、所用电线花费最少
-
输入
-
第一行是一个整数n表示有n组测试数据。(n<5)
每组测试数据的第一行是两个整数v,e.
v表示学校里楼的总个数(v<=500)
随后的e行里,每行有三个整数a,b,c表示a与b之间如果建铺设线路花费为c(c<=100)。(哪两栋楼间如果没有指明花费,则表示这两栋楼直接连通需要费用太大或者不可能连通)
随后的1行里,有v个整数,其中第i个数表示从第i号楼接线到外界供电设施所需要的费用。( 0<e<v*(v-1)/2 )
(楼的编号从1开始),由于安全问题,只能选择一个楼连接到外界供电设备。
数据保证至少存在一种方案满足要求。
输出
- 每组测试数据输出一个正整数,表示铺设满足校长要求的线路的最小花费。 样例输入
-
1 4 6 1 2 10 2 3 10 3 1 10 1 4 1 2 4 1 3 4 1 1 3 5 6
样例输出
-
4
/* Time:2014-8-30 21:51 */ #include<cstdio> #include<cstring> #include<algorithm> using namespace std; const int INF=1<<20; int minV=INF; int N,M; int map[505][510]; void Init(){ scanf("%d%d",&N,&M); for(int i=0;i<=N;i++) for(int j=0;j<=N;j++){ if(j!=i)map[i][j]=INF; else map[j][i]=0; } for(int i=0;i<M;i++){ int a,b,c; scanf("%d%d%d",&a,&b,&c); map[a][b]=map[b][a]=c; } minV=INF;int cost; for(int i=0;i<N;i++){ scanf("%d",&cost); minV=min(minV,cost); } } int Prim(){ int d[1000]; int Mst=0; bool vis[1000]; memset(vis,0,sizeof(vis)); for(int i=1;i<=N;i++) d[i]=map[1][i]; vis[1]=true; for(int i=1;i<N;i++){ int u=0,m=INF; for(int j=1;j<=N;j++){ if(!vis[j]&&m>d[j]){ m=d[j]; u=j; } } vis[u]=true; if(d[u]==INF)return Mst; Mst+=d[u]; for(int j=1;j<=N;j++){ if(!vis[j]&&d[j]>map[u][j]){ d[j]=map[u][j]; } } } return Mst; } void solve(){ int T; scanf("%d",&T); while(T--){ Init(); int Mst=Prim(); printf("%d\n",Mst+minV); } } int main(){ solve(); return 0; }
-
第一行是一个整数n表示有n组测试数据。(n<5)