每天进步一点点————数据库对象优化


1.   优化表的数据类型

在MySQL中,可以使用函数procedure analyse()对当前应用的表进行分析,该函数可以对数据表中列的数据类型提出优化建议,用户可以根据应用的实际情况酌情考虑是否实施优化。

以下是函数的使用方法

select* from 表名 PROCEDUREANALYSE();

SELECT* FROM 表名 procedureanalyse(16,256)————表示不要为那些包含的值多余16个或者256个字节的ENUM类型提出建议。

例如:

mysql>select * from emp procedure analyse()\G;

*************************** 1. row***************************

            Field_name: test2.emp.id                        ————列

              Min_value: 2                                              ————最小值

              Max_value: 55                                          ————最大值

            Min_length: 1                                              ————最小长度

            Max_length: 2                                             ————最大长度

      Empties_or_zeros: 0                                              

                  Nulls: 0

Avg_value_or_avg_length: 16.6000

                    Std: 15.0280

     Optimal_fieldtype: ENUM('2','4','5','10','11','12','15','25','27','55')NOT NULL  ——建议更改值

*************************** 2. row***************************

            Field_name: test2.emp.ename

              Min_value: bzfys

              Max_value: bzfys

            Min_length: 5

            Max_length: 5

      Empties_or_zeros: 0

                  Nulls: 0

Avg_value_or_avg_length: 5.0000

                    Std: NULL

     Optimal_fieldtype: ENUM('bzfys') NOT NULL

*************************** 3. row***************************

            Field_name: test2.emp.hired

              Min_value: 1970-01-01

              Max_value: 1970-01-01

            Min_length: 10

            Max_length: 10

      Empties_or_zeros: 0

                  Nulls: 0

Avg_value_or_avg_length: 10.0000

                    Std: NULL

     Optimal_fieldtype: ENUM('1970-01-01') NOT NULL

*************************** 4. row***************************

            Field_name: test2.emp.separated

              Min_value: 9999-12-31

              Max_value: 9999-12-31

            Min_length: 10

            Max_length: 10

      Empties_or_zeros: 0

                  Nulls: 0

Avg_value_or_avg_length: 10.0000

                    Std: NULL

     Optimal_fieldtype: ENUM('9999-12-31') NOT NULL

*************************** 5. row***************************

            Field_name: test2.emp.job

              Min_value: aac

              Max_value: aac

            Min_length: 3

            Max_length: 3

      Empties_or_zeros: 0

                  Nulls: 0

Avg_value_or_avg_length: 3.0000

                    Std: NULL

     Optimal_fieldtype: ENUM('aac') NOT NULL

*************************** 6. row***************************

            Field_name: test2.emp.store_id

              Min_value: 20

              Max_value: 20

            Min_length: 2

            Max_length: 2

      Empties_or_zeros: 0

                  Nulls: 0

Avg_value_or_avg_length: 20.0000

                    Std: 0.0000

     Optimal_fieldtype: ENUM('20') NOT NULL

6 rows in set (0.00 sec)

 

ERROR:

No query specified

然后可以通过以下命令修改字段类型(自己根据业务考虑是否要更改)

mysql>alter table emp modify ename ENUM('bzfys') NOT NULL;

Query OK, 10 rows affected (0.18 sec)

Records: 10 Duplicates: 0  Warnings: 0

 

 

2.   通过拆分提高表的访问效率

这里锁说的“拆分”,是指的对数据表进行拆分。

针对MyISAM类型的表进行,那么有两种拆分方法

1、第一种方法是垂直拆分,即把主码和一些列放到一个表,然后把主码和另外的列放到另一个表中

如果一个表中某些列常用,而另一些列不常用,则可以采用垂直拆分,另外,垂直拆分可以使得数据行变小,一个数据页就能存放更多的数据,在查询时就会减少I/O次数。其缺点是需要管理冗余列,查询锁有数据需要(JOIN)操作。

2、第二种方法是水平拆分,即根据一列或者多列数据的值把数据行放到两个独立的表中。

水平拆分通常使用在以下几种情况:

         1)表很大,分割后可以降低在查询时需要读取的数据和索引的页数,同事也降低了索引的层数,提高查询速度。

         2)表中的数据根本来就有独立性,例如,表中分别记录各个地区的数据或不同时期的数据,特别是有些数据常用,而另外一些数据不常用。

         3)需要把数据存放到多个介质。

水平拆分会给应用增加复杂度,它通常在查询时需要多个表名,查询所有数据需要UNION操作。

3.   逆规范化

数据库设时要求满足归法换,这个道理大家都清楚,但是是否数据的规范化程度越高越好呢?这个由实际需求来决定。

反规范的好处是降低连接操作的需求、降低外码和索引的数目,还能减少表的数目,相应带来的问题是可能出现数据完整性问题。加快查询速度,但会降低修改速度。因此,决定做逆规范时,一定要权衡利弊,仔细分析应用的数据存取需求和实际的性能特点,好的索引和其他方法经常能够解决性能问题,而不必采用范规范这种方法。

 

在进行反规范操作之前,要充分考虑数据的存取需求、常用表的大小、一些特殊的计算、数据的物理存储位置等。常用的反规范技术有增加冗余列、增加派生列、重新组表和分割表。

         增加冗余列:指在多个表中具有相同的列,它常用来在查询时避免连接操作。

         增加派生列:指增加的列来自其他表中的数据,由其他表中的数据经过计算生成。增加的派生列其作用是在查询时减少连接操作,避免使用集函数。

         重新组表:指如果许多用户需要查看两个表连接出来的结果数据,则把这两个表重新组成一个表来减少连接而提高性能。

         分割表:垂直拆分或者水平拆分。

另外,逆规范技术需要维护数据的完整性。无论使用何种反规范技术,都需要一定的管理来维护数据的完整性,常用分的方法是批处理维护、应用逻辑和触发器。

         批处理维护是指对复制列或派生列的修改积累一定的时间后,运行一批处理作业或者存储过程对复制列或派生列进行修改,这只能在对实时性要求不高的情况下使用。

         数据完整性也可以由应用逻辑实现,这就要求必须在同以事务中对所有涉及的表进行增删改操作。应用逻辑来实现数据完整性风险较大,因为同一逻辑必须在所有的应用中使用和维护,容易遗漏,特别是在需求变化时,不易维护。

         另一种方式就是使用触发器,对数据任何修改立即出发对复制或者派生列的相应修改。触发器是实时的,而且相应的处理逻辑只在一个地方出现,易于维护。一般来说,是解决这类问题的比较好的办法。

4.   使用中间表提高统计查询速度

中间表在统计查询中经常用到,其优点如下;

         中间表复制原表的部分数据,并且与原表相“隔离”,在中间表上做统计查询不会对在线应用产生负面影响。

         中间表上可以灵活的添加索引,或者增加临时用的薪资段,从而达到提高统计查询效率和辅助统计查询作用。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值