高斯消元 开关类问题(异或方程)

#include<cstdio>
#include<algorithm>
#include<cstring>
#define LL __int64
using namespace std;
int b[55][55],x[55],c[55][55];
int flag;//判断是否无解。
int guass(int equ,int val){
    int i,j,n,m,p,k,q;
    p=0;
    for(i=0;i<equ&&p<val;i++,p++){
        k=b[i][p];
        n=i;
        for(j=i+1;j<equ;j++){
            if(b[j][p]>k) {k=b[j][p];
                n=j;
            }
        }
        if(n!=i){
            for(j=p;j<val;j++){
                swap(b[i][j],b[n][j]);
            }
            swap(x[i],x[n]);
        }
        if(b[i][p]==0) {
            i--;
            continue;
        }
        for(j=i+1;j<equ;j++){
            if(b[j][p]==0) continue;
            for(m=p;m<val;m++){
                b[j][m]=b[i][m]^b[j][m];
            }
            x[j]=x[i]^x[j];
        }
    }
    q=i;
    m=0;
    for(i=0;i<equ;i++){
        p=0;
        for(j=0;j<val;j++){
            if(b[i][j]!=0){
                p=1;
                break;
            }
        }
        if(p==0&&x[i]!=0){
            flag=1;
            return 0;
        }
        if(p) m++;
    }
    return val-q;//返回不确定变元个数
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Gröbner基的特殊高斯消元算法通过特殊的高斯消元法来计算Gröbner基。这种算法可以处理规模很大的问题,因为它使用了一些技巧来减少计算量。 算法步骤: 1. 对于给定的理想$I$,构造一个包含$I$的理想$J$,使得$J$的Gröbner基可以用特殊高斯消元法计算出来。这个步骤通常使用Buchberger算法来完成。 2. 对于$J$的Gröbner基$G$的每个元素$g_i$,计算一个消元子$f_i$,使得$f_i$是$g_i$中的最高项。 3. 对于每对消元子$f_i$和$f_j$,如果它们是可约的,那么使用Buchberger算法计算它们的最小公倍式,并用它来代替$f_i$和$f_j$。 4. 对于每个消元子$f_i$,计算一个被消元子$h_i$,使得$h_i$是$I$中所有多项式中不包含$f_i$的最高项。 5. 对于每对消元子$f_i$和被消元子$h_j$,如果它们是可约的,那么使用Buchberger算法计算它们的最小公倍式,并用它来代替$f_i$和$h_j$。 6. 重复步骤4和5,直到没有可约的消元子和被消元子。 7. 对于每个消元子$f_i$和被消元子$h_i$,计算它们的最小公倍式$u_i$。 8. 返回$u_1,\dots,u_m$,它们组成了$I$的Gröbner基。 C代码实现: 以下是一个简单的C代码实现,用于计算给定多项式的Gröbner基。这个代码只是一个示例,可能需要进行修改才能处理更复杂的问题。 ```c #include <stdio.h> #include <stdlib.h> typedef struct { int deg; // 多项式的次数 int *coeffs; // 多项式的系数 } poly_t; // 计算两个多项式的最小公倍式 poly_t *lcm(poly_t *f, poly_t *g) { // TODO: 实现计算最小公倍式的代码 } // 计算多项式的消元子 poly_t *lead_term(poly_t *f) { poly_t *lt = (poly_t *) malloc(sizeof(poly_t)); lt->deg = f->deg; lt->coeffs = (int *) calloc(lt->deg + 1, sizeof(int)); lt->coeffs[lt->deg] = 1; return lt; } // 计算多项式的被消元子 poly_t *elim_term(poly_t *f, poly_t **polys, int n) { poly_t *et = (poly_t *) malloc(sizeof(poly_t)); et->deg = 0; et->coeffs = (int *) calloc(1, sizeof(int)); for (int i = 0; i < n; i++) { if (polys[i] == f) continue; int deg = polys[i]->deg - f->deg; if (deg < 0) continue; int coeff = polys[i]->coeffs[polys[i]->deg]; if (coeff == 0) continue; if (deg > et->deg) { et->coeffs = (int *) realloc(et->coeffs, (deg + 1) * sizeof(int)); for (int j = et->deg + 1; j <= deg; j++) { et->coeffs[j] = 0; } et->deg = deg; } et->coeffs[deg] = coeff; } return et; } // 判断两个多项式是否可约 int is_reducible(poly_t *f, poly_t *g) { // TODO: 实现判断多项式是否可约的代码 } // 计算Gröbner基 poly_t **groebner(poly_t **polys, int n) { // TODO: 实现计算Gröbner基的代码 } int main() { // TODO: 编写测试代码 return 0; } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值