记忆化搜索+dp(洛谷1514 引水入城2010noip提高组)

在一个遥远的国度,一侧是风景秀美的湖泊,另一侧则是漫无边际的沙漠。该国的行政区划十分特殊,刚好构成一个N 行M 列的矩形,如上图所示,其中每个格子都代表一座城市,每座城市都有一个海拔高度。

为了使居民们都尽可能饮用到清澈的湖水,现在要在某些城市建造水利设施。水利设施有两种,分别为蓄水厂和输水站。蓄水厂的功能是利用水泵将湖泊中的水抽取到所在城市的蓄水池中。

因此,只有与湖泊毗邻的第1 行的城市可以建造蓄水厂。而输水站的功能则是通过输水管线利用高度落差,将湖水从高处向低处输送。故一座城市能建造输水站的前提,是存在比它海拔更高且拥有公共边的相邻城市,已经建有水利设施。由于第N 行的城市靠近沙漠,是该国的干旱区,所以要求其中的每座城市都建有水利设施。那么,这个要求能否满足呢?如果能,请计算最少建造几个蓄水厂;如果不能,求干旱区中不可能建有水利设施的城市数目。

输入格式:

输入文件的每行中两个数之间用一个空格隔开。输入的第一行是两个正整数N 和M,表示矩形的规模。接下来N 行,每行M 个正整数,依次代表每座城市的海拔高度。

输出格式:

输出有两行。如果能满足要求,输出的第一行是整数1,第二行是一个整数,代表最少建造几个蓄水厂;如果不能满足要求,输出的第一行是整数0,第二行是一个整数,代表有几座干旱区中的城市不可能建有水利设施。

输入样例#1:
【输入样例1】
2 5
9 1 5 4 3
8 7 6 1 2

【输入样例2】
3 6
8 4 5 6 4 4
7 3 4 3 3 3
3 2 2 1 1 2
输出样例#1:
【输出样例1】
1
1

【输出样例2】
1
3

【样例1 说明】

只需要在海拔为9 的那座城市中建造蓄水厂,即可满足要求。

【样例2 说明】

上图中,在3 个粗线框出的城市中建造蓄水厂,可以满足要求。以这3 个蓄水厂为源头

在干旱区中建造的输水站分别用3 种颜色标出。当然,建造方法可能不唯一。

【数据范围】

说点题外话,这题的理解上确实有点难度,但是30分是非常好骗的,本人非常蒟蒻,于是连30分都没有拿下,orz~

切入正题:

1.判断no的部分,用一遍dfs或者bfs搜索哪些点可以到达,注意仔细的审题,题目要求的是求最后一行而不是整个地图。可以到达的点用一个book数组进行标记,并且下次搜索的时候如果搜过了就不用在继续搜索了(剪枝)。Get~

2.判断yes

首先看数据的范围,知道要用o(nm)的算法解决,所以单纯的搜索是不行的。

我们先证明一个命题:洪水填充的点是区间,也就是连续的。

证明过程如下:假设A点能到达的第n排的点不连续,其中点D无法到达,由于第一排的m个点能够通过“从高往低”的规则到达第n排所有点,故必定存在点BA点不能到达,它能到达点D。此时,B点到达D点的路径必定和A点能到达的点相交,设为C点,那么此时A点可以通过AàCàD来到达D,与假设矛盾。(Orz曹彦臣)

证明完之后,我们就可以用两个dfs函数,自底向上搜索。但是这里要注意搜索的顺序,从左边开始搜索的时候所到达的第一个点就是上面点的区间(根据我们证明)。同理,右边在进行搜索。就可以求出上面的每一个点所到达的底下的点的一条闭区间。

原问题就转换成了区间覆盖的问题:告诉你若干条线段,让你用最少的覆盖一条长线段。

于是就很自然的想到dp

f[i]表示[1,i]覆盖的最小线段数。

可以推出f[i]=min(f[i],f[l[j]-1]+1)j满足l[j]<=i<=r[j]

正确性是很显然的,大家可以画一张图模拟一下即可~

写了好长的解析,就放上我拙劣的代码吧,不懂可以问留言哦~

#include<bits/stdc++.h>
#define maxn 2000
using namespace std;

int a[maxn][maxn],book[maxn][maxn],l[maxn],r[maxn];
int f[maxn];
int n,m;

void dfs(int x,int y)
{
	if(book[x][y]) return ;
	book[x][y]=1;
	if(x-1>=1&&a[x][y]>a[x-1][y]) dfs(x-1,y);
	if(x+1<=n&&a[x][y]>a[x+1][y]) dfs(x+1,y);
	if(y-1>=1&&a[x][y]>a[x][y-1]) dfs(x,y-1);
	if(y+1<=m&&a[x][y]>a[x][y+1]) dfs(x,y+1);
	return ;
}

void dfsl(int num,int x,int y)
{
	if(book[x][y]) return;
	book[x][y]=1;
	if(x==1) l[y]=num;
	if(x-1>=1&&a[x][y]<a[x-1][y]) dfsl(num,x-1,y);
	if(x+1<=n&&a[x][y]<a[x+1][y]) dfsl(num,x+1,y);
	if(y-1>=1&&a[x][y]<a[x][y-1]) dfsl(num,x,y-1);
	if(y+1<=m&&a[x][y]<a[x][y+1]) dfsl(num,x,y+1);
	return ;
}

void dfsr(int num,int x,int y)
{
	if(book[x][y]) return;
	book[x][y]=1;
	if(x==1) r[y]=num;
	if(x-1>=1&&a[x][y]<a[x-1][y]) dfsr(num,x-1,y);
	if(x+1<=n&&a[x][y]<a[x+1][y]) dfsr(num,x+1,y);
	if(y-1>=1&&a[x][y]<a[x][y-1]) dfsr(num,x,y-1);
	if(y+1<=m&&a[x][y]<a[x][y+1]) dfsr(num,x,y+1);
	return ;
}


int main()
{
	ios::sync_with_stdio(false);
	cin>>n>>m;
	int ans=0;
	for(int i=1;i<=n;i++)
		for(int j=1;j<=m;j++) 
			cin>>a[i][j];
	for(int i=1;i<=m;i++)
		dfs(1,i);
		for(int j=1;j<=m;j++)
			if(!book[n][j])
				ans++;
	if(ans){cout<<"0\n"<<ans<<endl;return 0;}
	cout<<'1'<<endl;
	memset(book,0,sizeof(book));
	for(int i=1;i<=m;i++)
		dfsl(i,n,i);
	memset(book,0,sizeof(book));
	for(int i=m;i>=1;i--)
		dfsr(i,n,i);
//	for(int i=1;i<=m;i++)
//		cout<<r[i]<<endl;
	for(int i=0;i<=m;i++) f[i]=123900018;
	f[0]=0;	
	for(int i=1;i<=m;i++)
		for(int j=1;j<=m;j++)
			if(l[j]<=i&&r[j]>=i) 
				f[i]=min(f[i],f[l[j]-1]+1);
	cout<<f[m]<<endl;
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值