【重庆四校联考】电路图A-巴蜀T1(组合数学)

电路图A是一个关于串联电路的问题,包含一个电源和n-1个相同电阻,电流必须按90°拐弯且沿顺时针方向流动。电路图的数量和美观电路图的数量需要求模1,000,000,007。解决方案涉及到组合数学和序列排列,限制条件包括不能有连续两个L和不能有向内矩形凸起。" 112162904,10535363,Web前端开发:JS跨域解决方案详解,"['前端开发', 'JavaScript', '跨域', 'JSONP', 'CORS']
摘要由CSDN通过智能技术生成

电路图A

时间限制 : 1s 空间限制 : 256MB 
(A.cpp/c/pas)

【问题描述】

nodgd 要画一个电路图。 
这是一个很简单的电路图,所有的元件都是串联关系,从整体来看就是一个环状的结构。画电路图有很多要求,nodgd 为了画得好看就又添加了一些额外的要求。所有要求归结起来有以下几点: 
1. 这个环状电路上有n个双端电路元件(即每个电路元件有两个 连接导线的接头),其中只有一个直流电源;为了本题方便, 
其他 n − 1 个元件都是一模一样的电阻。 
2. 电流在电路图中每经过一个元件,就必须拐一个90°的弯;没有经过元件时不允许拐弯。参考右图。 
3. 从电路图整体上观察,电流沿顺时针方向流动,且电路不能自交。参考下图。 
栗子
栗子 
4. 如果一个符合题意的电路图,可以通过整体旋转一定的角度,再适当调整图中导线的长度,得到另外一个符合题意的电路图,则这两个电路图是相同的。参考下图。 
还是栗子
那么问题来了,nodgd想知道有多少种不同的电路图,以及有多少种不同的美观电路图。由于两个问题的答案都可能很大,请mod 1,000,000,007输出结果。 
【输入格式】 
输入文件A.in。 
输入文件第一行包含一个正整数n,表示包含电源在内的电路元件的总数量。 
【输出格式】 
输出文件A.out。 
输出文件第一行包含一个整数,表示不同的电路图数量mod 1,000,000,007的结果。 
第二行包含一个整数,表示不同的美观电路图数量mod 1,000,000,007的结果。 
【输入输出样例1】 
A.in 

A.out 


见分发给选手的压缩文件中的sample\A1.in和sample\A1.ans。 
【输入输出样例1说明】
可以有如下几种电路图,电路图数量是6,所以输出文件第一行输出一个整数6; 
容易发现,这6个电路图都是美观的电路图,所以第二行也输出一个整数6。 

栗子
【输入输出样例2】 
A.in 
10 
A.out 
120 
50


解题报告:

%%%JJDS nodgd

我死也不信NOIP第一题那么难

把顺时针方向看为正方向

首先由于题目中说每两个元件之间必须拐90度,因此电路图可以表示为一个长度为n的L和R组成的序列,其中L代表一个左拐,R代表一个右拐

因为电路图最后要拐360度回到起点,所以L和R的数量l,r有这么一个关系:   l = r-4

接下来就成了不同排列的序列个数问题,转换成计算n中选(n-4)/2个元素的组合数,使用公式Cmn=n!/(m!(n-m)!)

(本来可以用二分数列来O(logn)求阶乘,这里博主懒就不写了。。。)算组合数+取模运算为了应对有个小技巧,模除法需要转换为乘逆元,求逆元可以用扩展欧几里得,这里的p是质数吗,也可以用logp的费马小定理(a*a^(p-2) 同余 1 (mod p)  ,所以a^(p-2)为a逆元,用快速幂log p求得),下面的代码使用费马小定理。

问题一就解决了

问题二:

因为从内部任何一点都可以看到所有元件,所以不能有向内的矩形凸起,也就是说序列中不能有连续两个L出现

为了计算这个限制下的组合方案数,考虑在r个R中插入l个L

因为这个图转化为的序列是首尾相接的环,所以位置1和位置n不能同为L,分类讨论之后可以得到这个答案等于组合数之差(具体见代码),


代码

#include<cstdio>
typedef long long LL;
const LL MOD=1000000007;
LL advpow(LL a,LL b){
    LL ret=1;
    while(b){
        if(b&1)ret*=a,ret%=MOD;
        a*=a;
        a%=MOD;
        b>>=1;
    }
    return ret;
}
LL moddiv(LL a,LL b){
    return (a*advpow(b,MOD-2))%MOD;
}
LL getC(LL a,LL b){
    LL fac1=1,fac2=1;
    for(int i=a+1;i<=b;i++)
        fac1*=i,fac1%=MOD;
    for(int i=b-a;i;i--)
        fac2*=i,fac2%=MOD;
    //printf("fc1:%I64d fc2:%I64d\n",fac1,fac2);
    return moddiv(fac1,fac2);
}
int main(){
    int n;
    scanf("%d",&n);
    int k=(n-4)/2;
    LL p=getC((n+4)/2,n);
    LL ans2=(2LL*getC(k,n-k)-getC(k,n-k-1))%MOD;
    if(ans2<0)ans2+=MOD;
    printf("%lld\n",p);
    printf("%lld\n",ans2);
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值