机器人—路径规划
文章平均质量分 80
Cheris2014
这个作者很懒,什么都没留下…
展开
-
粒子群算法(4)----粒子群算法分类
原文链接转载 2014-09-18 17:46:51 · 684 阅读 · 0 评论 -
模拟退火算法
优化算法入门系列文章目录(更新中): 1. 模拟退火算法 2. 遗传算法 一. 爬山算法 ( Hill Climbing ) 介绍模拟退火前,先介绍爬山算法。爬山算法是一种简单的贪心搜索算法,该算法每次从当前解的临近解空间中选择一个最优解作为当前解,直到达到一个局部最优解。 爬山算法实现很简单,其主要缺点是转载 2014-10-22 16:55:25 · 539 阅读 · 0 评论 -
粒子群算法(1)----粒子群算法简介
原文转载 2014-09-18 17:49:36 · 591 阅读 · 0 评论 -
粒子群算法(5)-----标准粒子群算法的实现
标准粒子群算法的实现 标准粒子群算法的实现思想基本按照粒子群算法(2)----标准的粒子群算法的讲述实现。主要分为3个函数。第一个函数为粒子群初始化函数InitSwarm(SwarmSize......AdaptFunc)其主要作用是初始化粒子群的粒子,并设定粒子的速度、位置在一定的范围内。本函数所采用的数据结构如下所示:表ParSwarm记录的是粒子的位置、速转载 2014-09-18 17:52:07 · 733 阅读 · 0 评论 -
寻路算法学习笔记:Toward More Realistic Pathfinding
原文地址(英文)转载 2014-09-05 14:25:53 · 499 阅读 · 0 评论 -
粒子群算法(2)----标准的粒子群算法
原文转载 2014-09-18 17:46:45 · 492 阅读 · 0 评论 -
Using Binary Heaps in A* Pathfinding
原文链接(英文)转载 2014-09-05 14:47:54 · 1078 阅读 · 0 评论 -
A*路径规划初探
译者序:很久以前就知道了A*算法,但是从未认真读过相关的文章,也没有看过代码,只是脑子里有个模糊的概念。这次决定从头开始,研究一下这个被人推崇备至的简单方法,作为学习人工智能的开始。这篇文章非常知名,国内应该有不少人翻译过它,我没有查找,觉得翻译本身也是对自身英文水平的锻炼。经过努力,终于完成了文档,也明白的A*算法的原理。毫无疑问,作者用形象的描述,简洁诙谐的语言由浅入深的讲述了这一神奇的算转载 2014-09-05 14:38:36 · 1017 阅读 · 0 评论 -
粒子群算法(3)----标准的粒子群算法(局部版本)
原文在全局版的标准粒子群算法中,每个粒子的速度的更新是根据两个因素来变化的,这两个因素是:1. 粒子自己历史最优值pi。2. 粒子群体的全局最优值pg。如果改变粒子速度更新公式,让每个粒子的速度的更新根据以下两个因素更新,A. 粒子自己历史最优值pi。B. 粒子邻域内粒子的最优值pnk。其余保持跟全局版的标准粒子群算法一样,这个算法就变为局部版的粒子群算法。 一转载 2014-09-18 17:48:06 · 754 阅读 · 0 评论 -
理解A*寻路算法具体过程
这两天研究了下 A* 寻路算法, 主要学习了这篇文章, 但这篇翻译得不是很好, 我花了很久才看明白文章中的各种指代. 特写此篇博客用来总结, 并写了寻路算法的代码, 觉得有用的同学可以看看. 另外因为图片制作起来比较麻烦, 所以我用的是原文里的图片. 当然寻路算法不止 A* 这一种, 还有递归, 非递归, 广度优先, 深度优先, 使用堆栈等等, 有兴趣的可以研究研究~转载 2015-02-05 15:15:17 · 607 阅读 · 1 评论