人工智能
对人工智能有所心得会放在这
要吃火锅嘛?
会写代码的产品经理,华南理工大学深造中,做过大学老师,后读书深造+创业。在教育信息化、人机交互方面颇有心得,对区块链、人工智能也是感兴趣。
“BIAA分析师”、“人民网人民名师”、“司法区块链布道者”
展开
-
【超简明】通俗解释CNN-卷积-图片识别-TF实现-数据可视化【人工智能学习】
这几天在做一个【python入门语法】和【Django全栈开发】的互动课程,就把AI算法实现系列文章落下了…我感觉我再补充几个算法和数学原理文章,AI的系列课程也可以开始做了,希望大家多多捧场!????今天补充一个,经典的CNN结构!目标:提高速度说到神经网路,我们已经学了四关了,相信大家对于【网络结构】的重要性肯定了解了。不同的神经网络的作用只有一个:加快运算速度!深层神经网络和浅层神经网...原创 2020-04-17 15:36:31 · 1951 阅读 · 0 评论 -
关于教育信息化的一些期待与思考【人工智能】
关于在线教育、教育信息化的思考,整理出一种对于未来人工智能+教育的系统模式,分析了目前困难,并提出了简单解决方式。原创 2020-04-01 21:46:57 · 715 阅读 · 0 评论 -
深层神经网络-图片识别-TF实现-数据可视化【人工智能学习】
经过上一篇文章的学习,我们对于浅层神经网络的学习已经有了初步印象,我们来复习以下:对于神经网络,我们已经有了神经元的概念:每一个都是一个单独的回归函数罢了对于从回归学习到浅层神经网络,我们知道添加隐藏层可以提高预测的准确率,并且成功定义了add_layer方法为我们添加节点,快速生成隐藏层但是我们在浅层神经网络的学习里面的构建隐藏层还是采用了写死的方式,如果说要是想从浅层神经网络改成深层神经...原创 2020-03-29 13:11:07 · 377 阅读 · 0 评论 -
浅层神经网络-图片识别-TF实现-数据可视化【人工智能学习】
我们在前文逻辑回归的基础上深入一下,使用浅层神经网络优化一下我们的学习方法浅层神经网络:浅层神经网络一般指的是只有一层隐藏层的神经网络而神经网络的作用是通过多个学习单元的作用,来提高判断的准确率换句话说,我们之前的回归判断相当于众多神经元当中的一个,我们需要通过多个这样的回归方程组建一个学习网络,这样他可以从更多的角度来去推测结果,这样的结果也会更加准确而浅层神经网络一般是这样的:上...原创 2020-03-28 10:36:25 · 458 阅读 · 0 评论 -
逻辑回归-图片识别-TF实现-数据可视化【人工智能学习】
今天学习了一下逻辑回归,并且实现了对手写图片图集MNIST 的学习读者可以根据代码做少聊修改便可以完成一个简单的数字识别器逻辑回归什么事逻辑回归?逻辑回归和线性回归都是一种拟合方式,都是监督学习中的方式。线性回归是给一个结果,我们来预测她的结果是什么,我们举的例子是房价逻辑回归则不是,它是对于事物判断的可能性,即概率,我们举个例子:判断这个图片是不是一组手写数字而监督学习会给我们一大...原创 2020-03-25 00:47:30 · 573 阅读 · 0 评论 -
线性回归-TF实现【人工智能学习】
补一下昨天对博客昨天实现了线性回归,在此做个总结和记录。**线性回归–预测算法**所谓预测算法,就是在一系列事实当中,找到他们中间对关系,然后想尽一切办法构建一个公式(预测模型),以此来根据自变量,来预测因变量(结果)而线性回归,就是自变量和因标量的相关关系是【近似直线】的关系比如说经典例子:房价的预测。一个房子的面积和他的房价是线性关系,越大的房子越贵。当然你也会说,地段、朝向、...原创 2020-03-24 20:30:53 · 337 阅读 · 0 评论