背包问题第四讲——多重背包问题

题目:

有N种物品和一个容量为V的背包。第i种物品最多有n[i]件可用,每件费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。


分析题意:

    个人感觉,这样的问题就是一个变相的完全背包问题,或者干脆就可以转换为0-1背包问题。

    如果转化为完全背包问题,则就是限制了物品数量。原来的方程仍然可以用,不过首先要对n[i]进行规范,因为n[i]必定不大于(V/w[i])取下整:

           f[i][j][v] = max{f[i-1][n[i-1]][V],f[i-1][n[i-1]][V-c[i]]+w[i]};

           s.t. 1=< i <=物品数量;

    如果转换为0-1背包问题,就先把n[i]规范下,以减少物品数量,再拆分为相互独立的c,w都相等的物品,然后按照0-1背包的方程求解。

           f[i][v] = max{f[i-1][v],f[i-1][v-c[i]]+w[i]};

    转换为0-1背包的时候有局限性,比如当物品过多的时候,就会导致求解时间超时,而且不易存储。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值