极大团和最大团

查来很多资料才终于懂了极大团和最大团的概念。由于网上介绍的不多,且较为死板,特意整理如下:

团:表示N 个点的集合,这N个点彼此两两连接,既有N(N-1)/2条边。

极大团: 表示无法是其他团的子团。

最大团:点最多的极大团.


求极大团的个数(poj 2989)

#include <iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
using namespace std;
#define N 130
#define K 4
bool g[N][N];
int n,m;
struct node
{
    int id,d;
    node() {}
    node(int a,int b)
    {
        id=a,d=b;
    }
} nod[N];
bool cmp(node a,node b)
{
    return a.d>b.d;
}
int ans;
bool R[N][N],P[N][N],X[N][N];
void BronKerbosch1(int dep)
{
    bool empx=true;
    for(int i=0; i<n; i++)
    {
        if(P[dep][i]||X[dep][i])
        {
            empx=false;
            break;
        }
    }
    if(empx)
    {
        ans++;
        return;
    }
    for(int v=0; v<n; v++)
    {
        if(P[dep][v])
        {
            for(int i=0; i<n; i++)
            {
                R[dep+1][i]=R[dep][i]||(i==v);
                P[dep+1][i]=P[dep][i]&&(g[v][i]);
                X[dep+1][i]=X[dep][i]&&(g[v][i]);
            }
            BronKerbosch1(dep+1);
            if(ans>1000)return;
            P[dep][v]=false;
            X[dep][v]=true;
        }
    }
}

void BronKerbosch2(int dep)
{
    int u=-1;
    for(int i=0; i<n; i++)
    {
        if(P[dep][i]||X[dep][i])
        {
            u=i;
            break;
        }
    }
    if(u<0)
    {
        ans++;
        return;
    }
    for(int i=0; i<n; i++)
    {
        if(P[dep][i]&&!g[u][i])
        {
            for(int j=0; j<n; j++)
            {
                R[dep+1][j]=R[dep][j]||(j==i);
                P[dep+1][j]=P[dep][j]&&g[i][j];
                X[dep+1][j]=X[dep][j]&&g[i][j];
            }
            BronKerbosch2(dep+1);
            if(ans>1000)return;
            P[dep][i]=false;
            X[dep][i]=true;
        }
    }
}
void BronKerbosch3()
{
    ans=0;
    sort(nod,nod+n,cmp);
    for(int i=0; i<n; i++)
        R[0][i]=X[0][i]=0,P[0][i]=1;
    for(int i=0; i<n; i++)
    {
        int v=nod[i].id;
        for(int j=0; j<n; j++)
        {
            R[1][j]=R[0][j]||(v==j);
            P[1][j]=P[0][j]&&g[v][j];
            X[1][j]=X[0][j]&&g[v][j];
        }
        BronKerbosch2(1);
        P[0][v]=false;
        X[0][v]=true;
    }
}

int main()
{
    while(scanf("%d%d",&n,&m)!=EOF)
    {
        for(int i=0; i<n; i++)
        {
            nod[i]=node(i,0);
            for(int j=0; j<n; j++)g[i][j]=false;
        }
        for(int i=0; i<m; i++)
        {
            int a,b;
            scanf("%d%d",&a,&b);
            a--,b--;
            g[a][b]=g[b][a]=true;
        }
        ans=0;
        for(int i=0; i<n; i++)
        {
            R[0][i]=X[0][i]=false;
            P[0][i]=true;
        }
        BronKerbosch3();
        if(ans>1000)
        {
            printf("Too many maximal sets of friends.\n");
        }
        else
        {
            printf("%d\n",ans);
        }
    }
    return 0;
}

求最大团的点数:

/*==================================================*\
 |  最大团问题 DP + DFS
 | INIT: g[][]邻接矩阵;
 | CALL: res = clique(n);
 \*==================================================*/
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int V = 10;
int g[V][V], dp[V], stk[V][V], mx;
//dp[i]:从i到n-1的最大的团
//mx最后的结果
//stk[i][j]:第i层中与之相连的第j大的标号



//总共有n个数,dep代表当前的层数,ns代表于当前层相连的并且比ns大的标号的个数
int dfs(int n, int ns, int dep)
{
    if (0 == ns)
    {
        if (dep > mx)
            mx = dep;
        return 1;
    }
    int i, j, k, p, cnt;
    for (i = 0; i < ns; i++)
    {
        k = stk[dep][i];//与之相连的第i个点

        if (dep + n - k <= mx)//当前层数+第k层下边的<=mx,则不再搜索
            return 0;
        if (dep + dp[k] <= mx)//当前层数+dp的最大的<=mx,不再搜索
            return 0;

        cnt = 0;
        for (j = i + 1; j < ns; j++)
        {
            p = stk[dep][j];//i后边的某个点
            if (g[k][p])//如果i和j相连
                stk[dep + 1][cnt++] = p;//如果没有与之相连的,则cnt为0
        }
        dfs(n, cnt, dep + 1);
    }
    return 1;
}
int clique(int n)
{
    int i, j, ns;
    mx = 0;
    for ( i = n - 1; i >= 0; i--)  //dp用的
    {
// vertex: 0 ~ n-1
        ns = 0;
        for (j = i + 1; j < n; j++)
            if (g[i][j])
                stk[1][ns++] = j;
        dfs(n, ns, 1);
        dp[i] = mx;
    }
    return mx;
}
int main()
{
    int n,i,j;
    while(scanf("%d",&n),n)
    {
        for(i=0; i<n; i++)
            for(j=0; j<n; j++)
                scanf("%d",&g[i][j]);
        printf("%d\n",clique(n));
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值