计算多边形核的面积、半平面交(poj1279)

半平面交的模板。注意:此题点是按顺时针顺序排的

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
using namespace std;

const double eps = 1e-8;
const int maxn = 20005;

int dq[maxn], top, bot, pn, order[maxn], ln;
struct Point
{
    double x, y;
} p[maxn];

struct Line
{
    Point a, b;
    double angle;
} l[maxn];

int dblcmp(double k)
{
    if (fabs(k) < eps) return 0;
    return k > 0 ? 1 : -1;
}

double multi(Point p0, Point p1, Point p2)
{
    return (p1.x-p0.x)*(p2.y-p0.y)-(p1.y-p0.y)*(p2.x-p0.x);
}

bool cmp(int u, int v)
{
    int d = dblcmp(l[u].angle-l[v].angle);
    if (!d) return dblcmp(multi(l[u].a, l[v].a, l[v].b)) > 0;
    return d < 0;
}

void getIntersect(Line l1, Line l2, Point& p)
{
    double dot1,dot2;
    dot1 = multi(l2.a, l1.b, l1.a);
    dot2 = multi(l1.b, l2.b, l1.a);
    p.x = (l2.a.x * dot2 + l2.b.x * dot1) / (dot2 + dot1);
    p.y = (l2.a.y * dot2 + l2.b.y * dot1) / (dot2 + dot1);
}


bool judge(Line l0, Line l1, Line l2)
{
    Point p;
    getIntersect(l1, l2, p);
    return dblcmp(multi(p, l0.a, l0.b)) < 0;
}

void addLine(double x1, double y1, double x2, double y2)
{
    l[ln].a.x = x1;
    l[ln].a.y = y1;
    l[ln].b.x = x2;
    l[ln].b.y = y2;
    l[ln].angle = atan2(y2-y1, x2-x1);
    order[ln] = ln;
    ln++;
}

void halfPlaneIntersection()
{
    int i, j;
    sort(order, order+ln, cmp);
    for (i = 1, j = 0; i < ln; i++)
        if (dblcmp(l[order[i]].angle-l[order[j]].angle) > 0)
            order[++j] = order[i];
    ln = j + 1;
    dq[0] = order[0];
    dq[1] = order[1];
    bot = 0;
    top = 1;
    for (i = 2; i < ln; i++)
    {
        while (bot < top && judge(l[order[i]], l[dq[top-1]], l[dq[top]])) top--;
        while (bot < top && judge(l[order[i]], l[dq[bot+1]], l[dq[bot]])) bot++;
        dq[++top] = order[i];
    }
    while (bot < top && judge(l[dq[bot]], l[dq[top-1]], l[dq[top]])) top--;
    while (bot < top && judge(l[dq[top]], l[dq[bot+1]], l[dq[bot]])) bot++;
    dq[++top] = dq[bot];
    for (pn = 0, i = bot; i < top; i++, pn++)
        getIntersect(l[dq[i+1]], l[dq[i]], p[pn]);
}
//p[]数组里存多边形的核
double getArea()
{
    if (pn < 3) return 0;
    double area = 0;
    for (int i = 1; i < pn-1; i++)
        area += multi(p[0], p[i], p[i+1]);
    return fabs(area)/2;
}

int main()
{
    int  i,t;
    Point q[1505];
    scanf("%d",&t);
    for(int ti=1; ti<=t; ti++)
    {
        scanf ("%d", &pn);
        for (ln = i = 0; i < pn; i++)
        {
            scanf ("%lf%lf", &q[i].x, &q[i].y);
        }
        // 此题默认为顺时针排序
        for(i=0;i<pn;i++)
        {
        addLine(q[(i+1)%pn].x,q[(i+1)%pn].y,q[i].x,q[i].y);
        }
        halfPlaneIntersection();
        printf ("%.2lf\n", getArea());
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值