Nazo_Game攻略

前言

自认为是一款很有趣的解密游戏,要通过给的提示去完成解密。

Level 1

第一关

输入答案即可十分简单。

Level 2

第二关

输入入答案即可。

Level 3

第三关

把网址的 3改成 4就过关了

Level 4

第四关


题目:请进入第五关

这关的提示:现在才是真Nazo的题目

可以F12打开控制台,就可以找到答案:

把网址的 4改成 level-five就好了

Level 5

第五关

题目:NaN==NaN

提示:有时百度也挺好用的

百度的结果是 false.

具体是 NaN == NaN 执行结果是 false 。 JavaScript规定NaN表示的是非数字, 但是这个非数字也是不同的,因此NaN 不等于 NaN,并且两个NaN永远不可能相等

level-five改成 false就可以进入下一关。

Level 6

第六关


题目:741456963 852 7895123 852

提示:四个字母

在电脑的九个数字键盘上它们分别表示 H、1、Z、1

所以把 false改成 H1Z1即可。

Level 7

第七关

### 使用 AutoGPTQ 库量化 Transformer 模型 为了使用 `AutoGPTQ` 对 Transformer 模型进行量化,可以遵循如下方法: 安装所需的依赖包是必要的操作。通过 pip 安装 `auto-gptq` 可以获取最新版本的库。 ```bash pip install auto-gptq ``` 加载预训练模型并应用 GPTQ (General-Purpose Tensor Quantization) 技术来减少模型大小和加速推理过程是一个常见的流程。下面展示了如何利用 `AutoGPTQForCausalLM` 类来进行这一工作[^1]。 ```python from transformers import AutoModelForCausalLM, AutoTokenizer from auto_gptq import AutoGPTQForCausalLM model_name_or_path = "facebook/opt-350m" quantized_model_dir = "./quantized_model" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path) # 加载已经量化的模型或者创建一个新的量化器对象用于量化未压缩过的模型 gptq_model = AutoGPTQForCausalLM.from_pretrained(quantized_model_dir, model=model, tokenizer=tokenizer) ``` 对于那些希望进一步优化其部署环境中的模型性能的人来说,`AutoGPTQ` 提供了多种配置选项来自定义量化参数,比如位宽(bit-width),这有助于平衡精度损失与运行效率之间的关系。 #### 注意事项 当处理特定硬件平台上的部署时,建议查阅官方文档以获得最佳实践指导和支持信息。此外,在实际应用场景之前应该充分测试经过量化的模型以确保满足预期的质量标准。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值