推荐算法—序列特征Attention方式总结

1、MLP的Attention Pooling方法

在这里插入图片描述
从图中可以看出,在对物品序列和物品特征序列处理的时候,不是直接采用sum/max/mean pooling进行融合,而是对每个物品和每个物品特征分别进行了加权融合。因为考虑到这样一种情况,比如当前用户要书,那么在用户的历史购买行为中,我们应该去多关注该用户之前都买什么样的书,而该用户在其他方面的购买记录就相对显得没有那么重要。因此基于此想法,权重的计算就是根据当前物品和历史物品序列中每个物品的相似度得到。具体做法是对当前物品的embedding和历史物品序列中每个物品embedding进行点乘,然后再对这些得到的结果进行softmax归一化,得到的结果即为对应每个物品的权重,同理物品特征的权重计算也一样。

2、DIN中的Attention

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值