找工作
u013713010
这个作者很懒,什么都没留下…
展开
-
整理的Linux Shell语法速查表(用C语言语法来作对比)
虽然学过Linux Shell编程,但由于编写Shell脚本的机会实在是比较少(通常在项目初期搭建开发环境时编写得比较多一些),所以一些语法久而久之就会忘了,一个简单的语法去翻书效率实在是慢,所以就个人整理了一个表格,由于我用的编程语言是C/C++,所以在编程的时候往往脑海里面首先浮现的是用C语言怎么去编写它,所以我干脆拿C语言的语法来和Shell编程的语法作个对比表,这样查起来就方便了,哈:转载 2015-06-19 10:30:14 · 486 阅读 · 0 评论 -
算法之二叉树各种遍历
树形结构是一类重要的非线性数据结构,其中以树和二叉树最为常用。二叉树是每个结点最多有两个子树的有序树。通常子树的根被称作“左子树”(left subtree)和“右子树”(right subtree)。二叉树常被用作二叉查找树和二叉堆或是二叉排序树。二叉树的每个结点至多只有二棵子树(不存在度大于2的结点),二叉树的子树有左右之分,次序不能颠倒。二叉树的第i层至多有2的 i -1次方个结点;转载 2015-06-02 16:59:35 · 474 阅读 · 0 评论 -
多个文件的makefile例子
本文主要是说明多个文件下,makefile的使用!1. 假设我们有三个文件:hello.c sum.c sum.h每个文件的具体的内容如下:sum.h:int sum(int a,int b);sum.c:#include "sum.h" //注意:因为sum.h是我们自己的一个头文件,所以要用“ ”,而不能用;int sum(int a,in原创 2015-05-25 10:46:26 · 1128 阅读 · 0 评论 -
一个最简单的Makefile例子
原文地址:http://hi.baidu.com/hellosim/blog/item/42e78341b40c3e8db2b7dce3.html转载请注明出处1.hello.c#include int main(){ printf("Hello World!\n"); return 0;}2.Makefilehello : hello.o转载 2015-05-25 10:10:43 · 9629 阅读 · 0 评论 -
ubuntu 下从一个python文件中调用另外的一个python文件中的类!
1、为了方面,我们把这个两个python放到同一个文件夹中:test.py 及model_xxh.py,例子是演示test.py调用model_xxh.py是的类!model_xxh.py的内容如下:class Model_XXH(object): def __init__(self,name,age): self.name = name原创 2015-06-11 18:28:52 · 1815 阅读 · 0 评论 -
Ubuntu下如何搭建完美Python开发环境?
安装环境IntelCore7250(双核),操作系统Ubuntu10.04.11.安装OpenJDK6sudoapt-getinstallopenjdk-6-jdk选用OpenJDK的原因是他已经通过测试,完美兼容JDK,并在Linux更新源中已经取代了sun-java6-jdk了。(注1) 2.安装Eclipsesudoapt-getinstall转载 2015-06-11 20:15:39 · 6544 阅读 · 1 评论 -
计算机网络:浏览网页的详细过程可以分为几步?
我们来看当我们在浏览器输入http://www.mytest.com:81/mytest/index.html,幕后所发生的一切。首先http是一个应用层的协议,在这个层的协议,只是一种通讯规范,也就是因为双方要进行通讯,大家要事先约定一个规范。1.连接 当我们输入这样一个请求时,首先要建立一个socket连接,因为socket是通过ip和端口建立的,所以之前还有一个DNS解析过程,把ht转载 2015-04-29 14:53:34 · 1260 阅读 · 0 评论 -
算法导论——矩阵链乘法
【问题描述】给定有n个连乘矩阵的维数,要求计算其采用最优计算次序时所用的乘法次数,即所要求计算的乘法次数最少。例如,给定三个连乘矩阵{A1,A2,A3}的维数分别是10*100,100*5和5*50,采用(A1A2)A3,乘法次数为10*100*5+10*5*50=7500次,而采用A1(A2A3),乘法次数为100*5*50+10*100*50=75000次乘法,显然,最好的次序是(A1A2转载 2015-09-04 20:57:30 · 802 阅读 · 0 评论 -
Linux中fork()函数详解
linux中fork()函数详解(原创!!实例讲解) (转载) 一、fork入门知识 一个进程,包括代码、数据和分配给进程的资源。fork()函数通过系统调用创建一个与原来进程几乎完全相同的进程,也就是两个进程可以做完全相同的事,但如果初始参数或者传入的变量不同,两个进程也可以做不同的事。 一个进程调用fork()函数后,系统先给转载 2015-04-17 20:25:52 · 356 阅读 · 0 评论 -
2015华为上机笔试
1、输入两个字符串a,b;把a中包括b中的字符过滤后输出:输入:'abcad' 'ac'输出:'bd'参考代码:void result_int(string str1,string str2){ int count[26] = {0};for(int i=0; str2[i] != '\0';i++){char te原创 2015-04-20 09:49:12 · 544 阅读 · 0 评论 -
常用的Linux命令
1. ls命令ls命令是列出目录内容(List Directory Contents)的意思。运行它就是列出文件夹里的内容,可能是文件也可能是文件夹。?1234567root@tecmint:~# ls Android-Games转载 2015-04-23 17:18:23 · 873 阅读 · 0 评论 -
面试:机器学习--推荐算法
在推荐系统简介中,我们给出了推荐系统的一般框架。很明显,推荐方法是整个推荐系统中最核心、最关键的部分,很大程度上决定了推荐系统性能的优劣。目前,主要的推荐方法包括:基于内容推荐、协同过滤推荐、基于关联规则推荐、基于效用推荐、基于知识推荐和组合推荐。一、基于内容推荐基于内容的推荐(Content-based Recommendation)是信息过滤技术的延续与发展,它是建立在项目的内转载 2015-04-06 20:50:09 · 11694 阅读 · 1 评论 -
面试:机器学习--决策树
2.1、摘要 在前面两篇文章中,分别介绍和讨论了朴素贝叶斯分类与贝叶斯网络两种分类算法。这两种算法都以贝叶斯定理为基础,可以对分类及决策问题进行概率推断。在这一篇文章中,将讨论另一种被广泛使用的分类算法——决策树(decision tree)。相比贝叶斯算法,决策树的优势在于构造过程不需要任何领域知识或参数设置,因此在实际应用中,对于探测式的知识发现,决策树更加适用。转载 2015-04-06 20:09:08 · 3738 阅读 · 1 评论 -
面试:机器学习--支持向量机
支持向量机通俗导论(理解SVM的三层境界)前言 动笔写这个支持向量机(support vector machine)是费了不少劲和困难的,原因很简单,一者这个东西本身就并不好懂,要深入学习和研究下去需花费不少时间和精力,二者这个东西也不好讲清楚,尽管网上已经有朋友写得不错了(见文末参考链接),但在描述数学公式的时候还是显得不够。得益于同学白石的数学证明,我还是想尝转载 2015-04-06 20:12:24 · 1415 阅读 · 0 评论 -
面试:机器学习--k均值聚类(K-means)
2010-09-20 20:05 by T2噬菌体, 37775 阅读, 45 评论, 收藏, 编辑4.1、摘要 在前面的文章中,介绍了三种常见的分类算法。分类作为一种监督学习方法,要求必须事先明确知道各个类别的信息,并且断言所有待分类项都有一个类别与之对应。但是很多时候上述条件得不到满足,尤其是在处理海量数据的时候,如果通过预处理使得数据满足分类算法的要求,则代价非转载 2015-04-06 20:16:06 · 4737 阅读 · 0 评论 -
面试:大数据问题
教你如何迅速秒杀掉:99%的海量数据处理面试题前言 一般而言,标题含有“秒杀”,“99%”,“史上最全/最强”等词汇的往往都脱不了哗众取宠之嫌,但进一步来讲,如果读者读罢此文,却无任何收获,那么,我也甘愿背负这样的罪名,:-),同时,此文可以看做是对这篇文章:十道海量数据处理面试题与十个方法大总结的一般抽象性总结。 毕竟受文章和理论之限,本文将摒弃绝大转载 2015-04-06 20:03:38 · 2157 阅读 · 0 评论 -
面试:机器学习--深度学习
一、概述 Artificial Intelligence,也就是人工智能,就像长生不老和星际漫游一样,是人类最美好的梦想之一。虽然计算机技术已经取得了长足的进步,但是到目前为止,还没有一台电脑能产生“自我”的意识。是的,在人类和大量现成数据的帮助下,电脑可以表现的十分强大,但是离开了这两者,它甚至都不能分辨一个喵星人和一个汪星人。 图灵(图灵,大家都知道吧。转载 2015-04-06 20:21:14 · 12501 阅读 · 0 评论 -
面试:机器学习--贝叶斯
0、写在前面的话 我个人一直很喜欢算法一类的东西,在我看来算法是人类智慧的精华,其中蕴含着无与伦比的美感。而每次将学过的算法应用到实际中,并解决了实际问题后,那种快感更是我在其它地方体会不到的。 一直想写关于算法的博文,也曾写过零散的两篇,但也许是相比于工程性文章来说太小众,并没有引起大家的兴趣。最近面临毕业找工作,为了能给自己增加筹码,决定再次复习算法方面的知转载 2015-04-06 20:06:22 · 1003 阅读 · 0 评论 -
算法:动态规划
动态规划:从新手到专家March 26, 2013作者:Hawstein出处:http://hawstein.com/posts/dp-novice-to-advanced.html声明:本文采用以下协议进行授权: 自由转载-非商用-非衍生-保持署名|Creative Commons BY-NC-ND 3.0 ,转载请注明作者及出处。前言本文翻译自TopCo转载 2015-04-07 08:40:08 · 486 阅读 · 0 评论 -
链表笔试面试题
1.已知链表的头结点head,写一个函数把这个链表逆序[cpp] view plaincopyvoid List::reverse() { list_node * p = head; list_node * q = p->next; list_node * r = NUL转载 2015-04-07 10:02:48 · 416 阅读 · 0 评论 -
面试:机器学习--Adaboosting
一、Boosting简介 Boosting算法是一种通过多次学习来提升算法精度的方法,它采用的是综合的原则使得算法的效率明显改善,是一种将弱分类器提升为强分类器的方法。通俗点讲,就是“三个臭皮匠赛过诸葛亮”,臭皮匠就好比弱分类器,综合起来就是一个强分类器。 Boosting算法是一种集成学习方案。何谓集成学习?在理解集成学习之前,我们先介绍传统的学习方法,就转载 2015-04-06 20:26:55 · 2413 阅读 · 1 评论