bzoj 2783 [JLOI2012] 树 题解

转载请注明:http://blog.csdn.net/jiangshibiao/article/details/23991371

【原题】

                                                                            2783: [JLOI2012]树

                                                                        Time Limit:  1 Sec   Memory Limit:  128 MB
                                                                               Submit:  279   Solved:  174

在这个问题中,给定一个值S和一棵树。在树的每个节点有一个正整数,问有多少条路径的节点总和达到S。路径中节点的深度必须是升序的。假设节点1是根节点,根的深度是0,它的儿子节点的深度为1。路径不必一定从根节点开始。

Input

       第一行是两个整数N和S,其中N是树的节点数。

       第二行是N个正整数,第i个整数表示节点i的正整数。

       接下来的N-1行每行是2个整数x和y,表示y是x的儿子。

Output

       输出路径节点总和为S的路径数量。

Sample Input

3 3
1 2 3
1 2
1 3

Sample Output

2

HINT

对于100%数据,N≤100000,所有权值以及S都不超过1000。

【分析】可以发现,如果一个点是K条可行序列的终点,那么K<=1。因为一个点的父亲及其祖先都是唯一的。那么我们可以先根据这个性质对数的结点进行前缀和操作。然后枚举每个点,二分寻找它的祖先,使得那一段之和是S。关键就是如何快速地求出某个点的上K个父亲。

以前没有写过倍增LCA,于是就自己YY、类似于ST表的思想,我们用f[i][j]表示从第i个点开始上面2^j的父亲的编号。预处理还是简单的,类似于区间DP。但有些时候我要找非2的整次幂的父亲,怎么办?(没看过正规题解,我的效率很低,莫喷)我的想法是用lowbit去接近、比如是7,我先找2^0,变成6,再找2^1,变成4,再找2^2。

整体效率:O(N*LOG(N)^2)

【代码】

#include<cstdio>
#include<cmath>
#define lowbit(x) (x&-x)
#define STEP 18
#define N 100005
using namespace std;
struct arr{int go,next;}a[N];
int f[N][STEP],data[N],end[N],sum[N],deep[N],cnt,j,root,n,s,i,x,y,ans,p;
inline void add(int u,int v){a[++cnt].go=v;a[cnt].next=end[u];end[u]=cnt;}
inline void tree(int k)
{
  sum[k]=sum[f[k][0]]+data[k];
  deep[k]=deep[f[k][0]]+1;
  for (int i=end[k];i;i=a[i].next)
  {
    int go=a[i].go;tree(go);
  }
}
inline void init()
{
  for (int l=1;l<STEP;l++)
    for (int i=1;i<=n;i++)
      f[i][l]=f[f[i][l-1]][l-1];
}
inline int get(int now,int fa)
{
  int k=deep[now]-fa;
  while (k)
  {
    int t=lowbit(k);now=f[now][int(log2(t))];
    k-=t;if (now==0) return 0;
  }
  return now;
}
inline int erfen(int l,int r)
{
  if (l==r) return get(i,l);
  int mid=(l+r)/2,now=get(i,mid);
  if (sum[i]-sum[f[now][0]]>s||now==0) return erfen(mid+1,r);
  return erfen(l,mid);
}
int main()
{
  scanf("%d%d",&n,&s);
  for (i=1;i<=n;i++) scanf("%d",&data[i]);
  for (i=1;i<n;i++)
  {
    scanf("%d%d",&x,&y);
    add(x,y);f[y][0]=x;
  }
  for (i=1;i<=n;i++)
    if (f[i][0]==0) {root=i;break;}
  deep[root]=1;tree(root);init();
  for (i=1;i<=n;i++)
  {
    if (data[i]==s) {ans++;continue;}
    if (i==root) continue;
    p=erfen(1,deep[i]-1);
    if (sum[i]-sum[f[p][0]]==s) ans++;
  }
  printf("%d",ans);
  return 0;
}

题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点路径中,所有点的权值和的最小值。 时间复杂度 形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值