浅析算法——斯坦纳树

斯坦纳树

用途

给一个图,求最小生成树?

这个很简单,prim/kruskal搞一搞。

如果只要求联通某几个点,而不强制要求其他点的联通?

这个prim/kruskal就不好做了。

那怎么求这个呢?

当然是要用到斯坦纳树啊。

计算方法

假设 fi,sta f i , s t a 表示最后一个联通的是 i i ,当前要求点的联通性为 s t a (状态压缩),那么有两种状态转移:

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
问题是一个NP难问题,没有多项式时间算法可以完全解决。因此,我们通常使用近似算法来解决这个问题。 下面是一个简单的近似算法,以C语言实现。 首先,我们需要用动态规划算法计算出所有的子集的最小生成,然后对于每个子集,选择它的最小生成,并将它们合并成一个整体的最小生成算法的核心代码如下: ```c #include <stdio.h> #include <limits.h> #define MAXN 100 #define MAXM 10000 typedef struct { int u, v, w; } Edge; int n, m; Edge edges[MAXM]; int dp[1 << MAXN][MAXN]; int parent[1 << MAXN][MAXN]; int min(int a, int b) { return a < b ? a : b; } int readGraph() { if (scanf("%d%d", &n, &m) != 2) { return 0; } for (int i = 0; i < m; ++i) { scanf("%d%d%d", &edges[i].u, &edges[i].v, &edges[i].w); } return 1; } int cmp(const void *a, const void *b) { return ((Edge *) a)->w - ((Edge *) b)->w; } void sortEdges() { qsort(edges, m, sizeof(Edge), cmp); } void initialize() { for (int i = 0; i < (1 << n); ++i) { for (int j = 0; j < n; ++j) { dp[i][j] = INT_MAX; } } for (int i = 0; i < n; ++i) { dp[1 << i][i] = 0; } } void computeDP() { for (int s = 0; s < (1 << n); ++s) { for (int i = 0; i < n; ++i) { if ((s & (1 << i)) == 0) { continue; } for (int j = 0; j < m; ++j) { int u = edges[j].u; int v = edges[j].v; if ((s & (1 << u)) && (s & (1 << v))) { int t = s ^ (1 << i); int w = dp[t][u] + dp[t][v] + edges[j].w; if (w < dp[s][i]) { dp[s][i] = w; parent[s][i] = j; } } } } } } void printSteinerTree() { int s = (1 << n) - 1; int root = 0; for (int i = 1; i < n; ++i) { if (dp[s][i] < dp[s][root]) { root = i; } } printf("Minimum Steiner Tree Cost = %d\n", dp[s][root]); while (s) { int j = parent[s][root]; int t = s ^ (1 << root); if (dp[s][root] == dp[t][edges[j].u] + dp[t][edges[j].v] + edges[j].w) { s = t; printf("(%d,%d) ", edges[j].u, edges[j].v); root = edges[j].u; } else { j = edges[j].v; s &= ~(1 << root); root = j; } } printf("\n"); } int main() { if (!readGraph()) { return 1; } sortEdges(); initialize(); computeDP(); printSteinerTree(); return 0; } ``` 该算法的时间复杂度为$O(3^n * n^2 + m * 2^n)$,其中$m$是边的数量。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值