【中英】【吴恩达课后测验】Course 5 - 序列模型 - 第三周测验 - 序列模型与注意力机制
-
想一想使用如下的编码-解码模型来进行机器翻译:
这个模型是“条件语言模型”,编码器部分(绿色显示)的意义是建模中输入句子x的概率- 正确
- 错误
-
在集束搜索中,如果增加集束宽度 b b b,以下哪一项是正确的?
- 集束搜索将运行的更慢。
- 集束搜索将使用更多的内存。
- 集束搜索通常将找到更好地解决方案(比如:在最大化概率 P ( y ∣ x P(y|x P(y∣x)上做的更好)。
- 集束搜索将在更少的步骤后收敛。
-
在机器翻译中,如果我们在不使用句子归一化的情况下使用集束搜索,那么算法会输出过短的译文。
- 正确
- 错误
-
假设你正在构建一个能够让语音片段 x x x转为译文 y y y的基于RNN模型的语音识别系统,你的程序使用了集束搜索来试着找寻最大的 P ( y ∣ x ) P(y|x) P(y∣x)的值 y y y。在开发集样本中,给定一个输入音频,你的程序会输出译文 y ^ = \hat{y} = y^= “I’m building an A Eye system in Silly con Valley.”,人工翻译为 y ∗ = y^* = y∗= “I’m building an AI system in Silicon Valley.”
在你的模型中,
P ( y ^ ∣ x ) = 1.09 ∗ 1 0 − 7 P(\hat{y} \mid x) = 1.09*10^{-7} P(y^∣x)=1.09∗10−7
P ( y ∗ ∣ x ) = 7.21 ∗ 1 0 − 8 P(y^* \mid x) = 7.21*10^{-8} P(y∗∣x)=7.21∗10−8
那么,你会增加集束宽度 B B B来帮助修正这个样本吗?
-
不会,因为 P ( y ∗ ∣ x ) ≤ P ( y ^ ∣ x ) P(y^* \mid x) \leq P(\hat{y} \mid x) P(y∗∣x)≤P(y^∣x) 说明了这个锅要丢给RNN,不能让搜索算法背锅。
-
不会,因为 P ( y ∗ ∣ x ) ≤ P ( y ^ ∣ x ) P(y^* \mid x) \leq P(\hat{y} \mid x) P(y∗∣x)≤P(y^∣x) 说明了这个锅要丢给搜索算法,凭什么让RNN背锅?
-
会的,因为 P ( y ∗ ∣ x ) ≤ P ( y ^ ∣ x ) P(y^* \mid x) \leq P(\hat{y} \mid x) P(y∗∣x)≤P(y^∣x) 说明了都是RNN的错,咱不能冤枉搜索算法。
-
会的,因为 P ( y ∗ ∣ x ) ≤ P ( y ^ ∣ x ) P(y^* \mid x) \leq P(\hat{y} \mid x) P(y∗∣x)≤P(y^∣x) 说明了千错万错都是搜索算法的错,可不能惩罚RNN啊~
博主注:皮这一下好开心~(~ ̄▽ ̄)~
-
-
接着使用第4题那里的样本,假设你花了几周的时间来研究你的算法,现在你发现,对于绝大多数让算法出错的例子而言, P ( y ∗ ∣ x ) ≤ P ( y ^ ∣ x ) P(y^* \mid x) \leq P(\hat{y} \mid x) P(y∗∣x)≤P(y^∣x),这表明你应该将注意力集中在改进搜索算法上,对吗?
- 嗯嗯~
- 不对
-
回想一下机器翻译的模型:
除此之外,还有个公式 a < t , t ′ > = exp ( e < t , t ′ > ) ∑ t ′ = 1 T x exp ( e < t , t ′ > ) a^{<t,t'>} = \frac{\text{exp}(e^{<t,t'>})}{\sum^{T_x}_{t'=1}\text{exp}(e^{<t,t'>})} a<t,t′>=∑t′=1Txexp(e<t,t′>)exp(e<t,t′>)下面关于 α < t , t ’ > \alpha^{<t,t’>} α<t,t’> 的选项那个(些)是正确的?
- 对于网络中与输出 y < t > y^{<t>} y<t>高度相关的 α < t ′ > \alpha^{<t'>} α<t′> 而言,我们通常希望 α < t , t ′ > \alpha^{<t,t'>} α<t,t′>的值更大。(请注意上标)
- 对于网络中与输出 y < t > y^{<t>} y<t>高度相关的 α < t > \alpha^{<t>} α<t> 而言,我们通常希望 α < t , t ′ > \alpha^{<t,t'>} α<t,t′>的值更大。(请注意上标)
- ∑ t α < t , t ′ > = 1 \sum_{t} \alpha^{<t,t'>} = 1 ∑tα<t,t′>=1 (注意是和除以t.)
- ∑ t ′ α < t , t ′ > = 1 \sum_{t'} \alpha^{<t,t'>}=1 ∑t′α<t,t′>=1 (注意是和除以t′.)
-
网络通过学习的值 e < t , t ′ > e^{<t,t'>} e<t,t′>来学习在哪里关注“关注点”,这个值是用一个小的神经网络的计算出来的:
这个神经网络的输入中,我们不能将 s < t > s^{<t>} s<t>替换为 s < t − 1 > s^{<t-1>} s<t−1>。这是因为 s < t > s^{<t>} s<t>依赖于 α < t , t ′ > \alpha^{<t,t'>} α<t,t′>,而 α < t , t ′ > \alpha^{<t,t'>} α<t,t′>又依赖于 e < t , t ′ > e^{<t,t'>} e<t,t′>;所以在我们需要评估这个网络时,我们还没有计算出 s t s^{t} st。
- 正确
- 错误
-
与题1中的编码-解码模型(没有使用注意力机制)相比,我们希望有注意力机制的模型在下面的情况下有着最大的优势:
- 输入序列的长度 T x T_x Tx比较大。
- 输入序列的长度 T x T_x Tx比较小。
9.在CTC模型下,不使用"空白"字符(_)分割的相同字符串将会被折叠。那么在CTC模型下,以下字符串将会被折叠成什么样子?__c_oo_o_kk___b_ooooo__oo__kkk
- cokbok
- cookbook
- cook book
- coookkboooooookkk
- 在触发词检测中,
x
<
t
>
x^{<t>}
x<t> 是:
- 时间 t t t时的音频特征(就像是频谱特征一样)。
- 第 t t t个输入字,其被表示为一个独热向量或者一个字嵌入。
- 是否在第 t t t时刻说出了触发词。
- 是否有人在第 t t t时刻说完了触发词。
Sequence models & Attention mechanism
- Consider using this encoder-decoder model for machine translation.
This model is a “conditional language model” in the sense that the encoder portion (shown in green) is modeling the probability of the input sentence
x
x
x.
- [x] True
- [ ] False

- In beam search, if you increase the beam width BB, which of the following would you expect to be true? Check all that apply.
- Beam search will run more slowly.
- Beam search will use up more memory.
- Beam search will generally find better solutions (i.e. do a better job maximizing P(y \mid x)P(y∣x))
- Beam search will converge after fewer steps.
- In machine translation, if we carry out beam search without using sentence normalization, the algorithm will tend to output overly short translations.
- True
- False
-
Suppose you are building a speech recognition system, which uses an RNN model to map from audio clip x x x to a text transcript y y y. Your algorithm uses beam search to try to find the value of y y y that maximizes P ( y ∣ x ) P(y \mid x) P(y∣x).
On a dev set example, given an input audio clip, your algorithm outputs the transcript y ^ = \hat{y} = y^= “I’m building an A Eye system in Silly con Valley.”, whereas a human gives a much superior transcript y ∗ = y^* = y∗= “I’m building an AI system in Silicon Valley.”.
According to your model,
P ( y ^ ∣ x ) = 1.09 ∗ 1 0 − 7 P(\hat{y} \mid x) = 1.09*10^{-7} P(y^∣x)=1.09∗10−7
P ( y ∗ ∣ x ) = 7.21 ∗ 1 0 − 8 P(y^∗ \mid x) = 7.21∗10^{−8} P(y∗∣x)=7.21∗10−8
Would you expect increasing the beam width B to help correct this example?- No, because P ( y ∗ ∣ x ) ≤ P ( y ^ ∣ x ) P(y^∗ \mid x) \leq P(\hat{y} \mid x) P(y∗∣x)≤P(y^∣x) indicates the error should be attributed to the RNN rather than to the search algorithm.
- No, because P ( y ∗ ∣ x ) ≤ P ( y ^ ∣ x ) P(y^∗ \mid x) \leq P(\hat{y} \mid x) P(y∗∣x)≤P(y^∣x) indicates the error should be attributed to the search algorithm rather than to the RNN.
- Yes, because P ( y ∗ ∣ x ) ≤ P ( y ^ ∣ x ) P(y^∗ \mid x) \leq P(\hat{y} \mid x) P(y∗∣x)≤P(y^∣x) indicates the error should be attributed to the RNN rather than to the search algorithm.
- Yes, because P ( y ∗ ∣ x ) ≤ P ( y ^ ∣ x ) P(y^∗ \mid x) \leq P(\hat{y} \mid x) P(y∗∣x)≤P(y^∣x) indicates the error should be attributed to the search algorithm rather than to the RNN.
- Continuing the example from Q4, suppose you work on your algorithm for a few more weeks, and now find that for the vast majority of examples on which your algorithm makes a mistake,
P
(
y
∗
∣
x
)
>
P
(
y
^
∣
x
)
P(y^∗ \mid x) > P(\hat{y} \mid x)
P(y∗∣x)>P(y^∣x). This suggest you should focus your attention on improving the search algorithm.
- True
- False
- Consider the attention model for machine translation.

Further, here is the formula for α < t , t ′ > \alpha^{<t,t′>} α<t,t′>.
a < t , t ′ > = exp ( e < t , t ′ > ) ∑ t ′ = 1 T x exp ( e < t , t ′ > ) a^{<t,t'>} = \frac{\text{exp}(e^{<t,t'>})}{\sum^{T_x}_{t'=1}\text{exp}(e^{<t,t'>})} a<t,t′>=∑t′=1Txexp(e<t,t′>)exp(e<t,t′>)
Which of the following statements about α < t , t ′ > \alpha^{<t,t′>} α<t,t′> are true? Check all that apply.
- We expect α < t , t ′ > \alpha^{<t,t'>} α<t,t′> to be generally larger for values of a < t ′ > a^{<t'>} a<t′> that are highly relevant to the value the network should output for y < t > y^{<t>} y<t>. (Note the indices in the superscripts.)
- We expect α < t , t ′ > \alpha^{<t,t'>} α<t,t′> to be generally larger for values of a < t > a^{<t>} a<t> that are highly relevant to the value the network should output for y < t ′ > y^{<t'>} y<t′>. (Note the indices in the superscripts.)
- ∑ t α < t , t ′ > = 1 \sum_{t} \alpha^{<t,t'>}=1 ∑tα<t,t′>=1 (Note the summation is over t t t.)
- ∑ t ′ α < t , t ′ > = 1 \sum_{t'} \alpha^{<t,t'>}=1 ∑t′α<t,t′>=1 (Note the summation is over t ′ t' t′.)
-
The network learns where to “pay attention” by learning the values e<t,t′>, which are computed using a small neural network:
We can’t replace s < t − 1 > s^{<t-1>} s<t−1> with s < t > s^{<t>} s<t> as an input to this neural network. This is because s < t > s^{<t>} s<t> depends on α < t , t ′ > \alpha^{<t,t′>} α<t,t′> which in turn depends on e < t , t ′ > e^{<t,t′>} e<t,t′>; so at the time we need to evalute this network, we haven’t computed s < t > s^{<t>} s<t> yet.- True
- False
- Compared to the encoder-decoder model shown in Question 1 of this quiz (which does not use an attention mechanism), we expect the attention model to have the greatest advantage when:
- The input sequence length T x T_x Tx is large.
- The input sequence length T x T_x Tx is small.
- Under the CTC model, identical repeated characters not separated by the “blank” character (_) are collapsed. Under the CTC model, what does the following string collapse to? __c_oo_o_kk___b_ooooo__oo__kkk
- cokbok
- cookbook
- cook book
- coookkboooooookkk
- In trigger word detection,
x
<
t
>
x^{<t>}
x<t> is:
- Features of the audio (such as spectrogram features) at time t t t.
- The t t t-th input word, represented as either a one-hot vector or a word embedding.
- Whether the trigger word is being said at time t t t.
- Whether someone has just finished saying the trigger word at time t t t.