题目大意:
给出长度L和需要取模的数M,
现在要找出长度为 L 的由 f 和 m 构成的字符串, 其中不含有 fmf 和 fff 这两种字串的字符串的数量, 最后输出结果模上M
大致思路:
首先这是一个dp问题, 我们用0表示f, 用1表示m则, 需要找到长度为L的串, 其中不包含010和000的字串的字符串的数量
那么我们用 dp[ n ][ 00 ], dp[ n ][ 01 ] , dp[ n ][ 10 ], dp[ n ][ 11 ], 分别表示满足条件的长度为n且结尾分别是00, 01, 10, 11的字符串的数量
这里的00, 01, 10,11 由于可以用二进制中的0,1,2,3,分别表示,所以在代码中表示也方便
那么不难发现递推关系:
其中dp[2][0,1,2,3] = 1;
dp[ n + 1 ][ 00 ] = dp[ n ][ 10 ];
dp[ n + 1 ][ 01 ] = dp[ n ][ 10 ] + dp[ n ][ 00 ];
dp[ n + 1 ][ 10 ] = dp[ n ][ 11 ];
dp[ n + 1 ][ 11 ] = dp[ n ][ 11 ] + dp[ n ][ 01 ];
推到这里我直接写了个dp就交上去了,,,复杂度O(T*L),可是没想到 test 的组数非常多,,于是TLE了
那么可以用矩阵来进行优化:
这样子时间复杂度降到了O(T*log(L)),,,
代码如下:
Result : Accepted Memory : 292 KB Time : 234 ms
/*
* Author: Gatevin
* Created Time: 2014/7/28 16:53:28
* File Name: test.cpp
*/
#include<iostream>
#include<sstream>
#include<fstream>
#include<vector>
#include<list>
#include<deque>
#include<queue>
#include<stack>
#include<map>
#include<set>
#include<bitset>
#include<algorithm>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cctype>
#include<cmath>
#include<ctime>
#include<iomanip>
using namespace std;
const double eps(1e-8);
typedef long long lint;
int L,M;
struct Matrix
{
int a[5][5];
Matrix()
{
memset(a, 0, sizeof(a));
for(int i = 1; i <= 4; i++)
{
a[i][i] = 1;
}
}
};
Matrix operator * (const Matrix & m1, const Matrix & m2)
{
Matrix m;
for(int i = 1; i <= 4; i++)
{
for(int j = 1; j <= 4; j++)
{
m.a[i][j] = 0;
for(int k = 1; k <= 4; k++)
{
m.a[i][j] = (m.a[i][j] + (m1.a[i][k]*m2.a[k][j]) % M) % M;
}
}
}
return m;
}
Matrix quick_pow(Matrix base, int pow)
{
Matrix I;
while(pow)
{
if(pow & 1)
{
I = I * base;
}
base = base*base;
pow >>= 1;
}
return I;
}
int main()
{
while(cin>>L>>M)
{
if(L == 0)
{
cout<<"0"<<endl;
continue;
}
if(L == 1)
{
cout<<"2"<<endl;
continue;
}
Matrix S;
memset(S.a, 0, sizeof(S.a));
S.a[1][1] = 1 % M;
S.a[1][2] = 1 % M;
S.a[2][3] = 1 % M;
S.a[2][4] = 1 % M;
S.a[3][1] = 1 % M;
S.a[4][3] = 1 % M;
Matrix tran = quick_pow(S, L - 2);
int f[5];
f[1] = f[2] = f[3] = f[4] = 1;;
int answer = 0;
for(int i = 1; i <= 4; i++)
{
for(int j = 1; j <= 4; j++)
{
answer = (answer + f[i]*tran.a[i][j]) % M;
}
}
cout<<answer<<endl;
}
return 0;
}