hdu 2604 queuing dfa dp + 矩阵快速幂

Queuing

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2602    Accepted Submission(s): 1215


Problem Description
Queues and Priority Queues are data structures which are known to most computer scientists. The Queue occurs often in our daily life. There are many people lined up at the lunch time. 

  Now we define that ‘f’ is short for female and ‘m’ is short for male. If the queue’s length is L, then there are 2 L numbers of queues. For example, if L = 2, then they are ff, mm, fm, mf . If there exists a subqueue as fmf or fff, we call it O-queue else it is a E-queue.
Your task is to calculate the number of E-queues mod M with length L by writing a program.
 

Input
Input a length L (0 <= L <= 10  6) and M.
 

Output
Output K mod M(1 <= M <= 30) where K is the number of E-queues with length L.
 

Sample Input
  
  
3 8 4 7 4 8
 

Sample Output
  
  
6 2 1
 

Author
WhereIsHeroFrom
 

Source
 

Recommend
lcy   |   We have carefully selected several similar problems for you:   1588  1757  2606  2276  2603 
 
参考:http://www.xuebuyuan.com/1573860.html
http://hi.baidu.com/aekdycoin/item/f3a474a7ee3b0d218919d3ae   

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
const int N = 4;
int M;
int f[6] = {9,6,4,2,0};
struct Matrix{
    int v[N][N];
    Matrix(){ memset(v,0,sizeof(v));}
    Matrix(int){
                memset(v,0,sizeof(v));
                v[0][0] =
                v[0][1] =
                v[1][2] =
                v[2][0] =
                v[2][3] =
                v[3][0] = 1;}
};
Matrix operator *(Matrix a,Matrix b){
    Matrix c;
    for(int i = 0; i < N; ++i)
        for(int j = 0; j < N; ++j)
            for(int k = 0; k < N; ++k){
                c.v[i][j] += a.v[i][k] * b.v[k][j] ;
                if(c.v[i][j] >= M) c.v[i][j] %= M;
            }
    return c;
}
Matrix operator %(Matrix a,int m){
        for(int i = 0; i < N; ++i)
            for(int j = 0;j < N; ++j)
                a.v[i][j] %= m;
        return a;
}

Matrix operator ^(Matrix a,int b){
        if(b == 1) return a;
        Matrix c = (a^(b>>1));
        if(b&1)
        return  (c*c%M)*a % M;
        return  c*c % M;
}
Matrix t(0);
void solve(int n){
    Matrix ans;
    if(n <= 4){
        printf("%d\n",f[4 - n] % M);return;
    }
    ans = t^(n - 4);
    int res = 0;
	for(int i = 0;i < 4; i++)
		res=(res + (f[i] * ans.v[i][0])% M ) % M;
    printf("%d\n",res);
}

int main()
{

    int n;
    while(~scanf("%d%d",&n,&M)){
        solve(n);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值