题目大意:
从起点开始到终点,找上升子列,求上升子列的和最大为多少
大致思路:
由于数据范围只有1000,那么很容易想到的O(n^2)的表达式:
dp[ i ] = max(dp[ k ] + a[ i ] , a[ i ]) 其中 1 <= k <= i - 1 并且 a[ k ] < a[ i ] dp[ i ] 表示到达以a[ i ]为结尾 时能得到的最大的子列的和
处理一下dp[ 0 ] = 0 a [ 0 ] = 0 即可
最后dp[ 0 ~ n ] 中的最大值就是结果
代码如下:
Result : Accepted Memory : 264 KB Time : 31 ms
/*
* Author: Gatevin
* Created Time: 2014/8/15 18:58:04
* File Name: haha.cpp
*/
#include<iostream>
#include<sstream>
#include<fstream>
#include<vector>
#include<list>
#include<deque>
#include<queue>
#include<stack>
#include<map>
#include<set>
#include<bitset>
#include<algorithm>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cctype>
#include<cmath>
#include<ctime>
#include<iomanip>
using namespace std;
const double eps(1e-8);
typedef long long lint;
int n;
int dp[1002];
int a[1002];
int answer;
int main()
{
while(~scanf("%d", &n) && n)
{
for(int i = 1; i <= n; i++)
{
scanf("%d", &a[i]);
}
a[0] = 0;
memset(dp, 0, sizeof(dp));
answer = 0;
for(int i = 1; i <= n; i++)
{
for(int j = 0; j < i; j++)
{
if(a[j] < a[i])
{
dp[i] = max(dp[j] + a[i], dp[i]);
}
}
answer = max(answer, dp[i]);
}
printf("%d\n", answer);
}
return 0;
}