前面介绍的分布描述量,比如期望和方差,都是基于单一随机变量的。现在考虑多个随机变量的情况。我们使用联合分布来表示定义在同一个样本空间的多个随机变量的概率分布。
联合分布中包含了相当丰富的信息。比如从联合分布中抽取某个随机变量的边缘分布,即获得该随机变量的分布,并可以据此,获得该随机变量的期望和方差。这样做是将视线限制在单一的一个随机变量上,我们损失了联合分布中包含的其他有用信息,比如不同随机变量之间的互动关系。为了了解不同随机变量之间的关系,需要求助其它的一些描述量。
协方差
协方差(covariance)表达了两个随机变量的协同变化关系。我们取一个样本空间,即学生的体检数据。学生的身高为随机变量X,学生的体重为随机变量Y。
160cm170cm180cm
60kg0.20.050.05
70kg0.050.30.05
80kg0.050.050.2
根据上表,大的身高(180cm)和大的体重(80kg)同时出现的概率较大(0.2),小的身高值(160cm)和小的体重(60kg)的概率也较大(0.2)。偏大的身高往往伴随偏大的体重,偏小的身高常伴随偏小的体重。这种“大”伴随着“大”,“小”伴随着“小”的情形,叫做正相关。根据上面的数据,身高和体重两个随机变量正相关性很强。