这里是LeeTioN的博客
在LeetCode做了三道经典的回文串的题目,分别是
5. Longest Palindromic Substring 最长回文子串
516. Longest Palindromic Subsequence 最长回文子序列
647. Palindromic Substrings 回文子串个数
最长回文子串
描述:给定一个字符串,找出它里面最长的回文子串,例如”cbbd”的最长回文子串为”bb”
思路:最明显的方法是按照顺序去遍历,每一次循环将array[i]作为中心,然后扩散到两边的字符,判断两边的字符是否相等,如果相等,则继续扩散,否则访问下一个字符,这里注意也要考虑不要超过字符串的边界。这种方法可以称作中心扩散法。
遍历的时候还要分两种情况讨论——一是最长回文子串的长度为奇数,二是它的长度为偶数。
class Solution {
public:
string longestPalindrome(string s) {
int max = 0;
int left, right, i, j, count, start, end;
for(i = 0; i < s.size(); i++){//长度为奇数的情况
for(j = 0; i - j >= 0 && i + j < s.size(); j++ ){//注意不要超过边界
if(s[i-j] != s[i+j]){
break;
}
count = 2 * j + 1;
left = i - j;
right = i + j;
}
if(max < count){
max = count;
start = left;//保存最长回文子串的起始点和终点
end = right;
}
}
for(i = 0; i < s.size(); i++){//长度为偶数的情况
for(j = 0; i - j >= 0 && i + j + 1 < s.size(); j++ ){
if(s[i-j] != s[i+j+1]){
break;
}
count = 2 * j + 2;
left = i - j;
right = i + j + 1;
}
if(max < count){
max = count;
start = left;
end = right;
}
}
return s.substr(start, end - start + 1);
}
};
最长回文子序列
描述:相比于上一题,这里则没有对串的连续性有要求,只要序列是给定串的子集,并满足回文性质,就可以当做最长回文子序列。
思路:这里我们需要一个二维的状态矩阵来记录信息,dp[i][j]表示第i个字符到第j个字符满足的最长回文子串的长度。很明显,我们需要求的是dp[0][length]的长度。
细节:我们虽然申请了一个length*length的矩阵,但是我们只需要用到右上三角形的空间,因为dp[i][j]和dp[j][i]表示的是一个意思。还有一点就是我们在求这个状态矩阵的顺序时,是按对角线一条一条往右上方计算的。计算顺序如下图所示。
class Solution {
public:
int longestPalindromeSubseq(string s) {
int n = s.size();
vector<vector<int>> dp(n, vector<int>(n, 0));
for(int i = 0; i < n; i++){
dp[i][i] = 1;
}
for(int len = 1; len < n; len++){
for(int i = 0; i < n - len; i++){
int j = i + len;
if(s[i] == s[j]){
dp[i][j] = dp[i+1][j-1] + 2;
}
else{
dp[i][j] = max(dp[i+1][j], dp[i][j-1]);
}
}
}
return dp[0][n-1];
}
};
回文子串个数
思路:跟上一题的思路基本一致,按照矩阵的斜线,从左下往右上更新状态矩阵。但是这里是子串,所以就是连续的。我们的状态矩阵则是一个布尔型的,dp[i][j]记录的是从i到j是否为一个回文串。最后更新完整个矩阵后,再重新遍历一遍,记录个数。
class Solution {
public:
int countSubstrings(string s) {
int n = s.size();
int count = 0;
vector<vector<bool>> dp(n, vector<bool>(n, false));
for(int i = 0; i < n; i++){
dp[i][i] = true;
}
for(int len = 1; len < n; len++){
for(int i = 0; i < n - len; i++){
int j = i + len;//按左上到右下的斜线往右上方遍历
if(s[i] != s[j]){
dp[i][j] = false;
}
else{
dp[i][j] = isPalindromic(dp, i+1, j-1);
}
}
}
for(int i = 0; i < n; i++){
for(int j = i; j < n; j++){
if(dp[i][j]){
count++;
}
}
}
return count;
}
bool isPalindromic(vector<vector<bool>>& dp, int i, int j){
if(i >= j){
return true;//i和j之间不存在其他字符
}
else{
return dp[i][j];
}
}
};