int的取值范围

引言

在学C++或者Java的时候应该都会先了解各种基本数据类型的初值和它们的取值范围,有些人可能会不太重视这块内容,其实很重要,很多大公司面试的过程中都会问到int的取值范围,溢出之后会怎么样等问题。

正文

  • 首先来看下在C++和Java中一些基本的数据类型

在c++中的三类基本数据类型
C++
在java中的四类基本数据类型
java

上图可以看到c++和java之间的基本数据类型的区别,java多了一类布尔类型的数据。然后主要来看下int的取值范围,int这个数据类型在c++和java中都存在。
大家都知道int的取值范围是-2^31 - 2^31-1 ,也就是-2147483648 - 2147483647 ,那么为什么会这样取值呢?
在计算机当中数据都是以01二进制形式存储的,而整型变量int占的是4个字节,一个字节8位,也就是32位,所以一个整型变量在计算机当中其实可以用32位的二进制来表示。
比如1这个整型变量,用二进制可以表示为(int是带符号的整型变量,所以以下第一位代表符号位,)
0000 0000 | 0000 0000 | 0000 0000 | 0000 0001 这就是正数1的原码(每8位为一个字节所以正好占4个字节) 注:正整数用原码表示,负整数用补码表示。
所以正整数在内存中的32位最大可以表示为
0111 1111 | 1111 1111 | 1111 1111 | 1111 1111 也就是2^31-1=2147483647 因为是正整数,所以第一位符号位是0;从1开始所以要减去全0这种情况。

同理-1这个负的整型变量在内存中用二进制可以表示为
1000 0000 | 0000 0000 | 0000 0000 | 0000 0001 这就是负数-1的原码,但是负整数在计算机中是用补码表示的,所以要把这个原码转化成补码,补码就是原码除符号位之外取反后加1。
1111 1111 | 1111 1111 | 1111 1111 | 1111 1110 这就是-1的反码,再对反码加1
1111 1111 | 1111 1111 | 1111 1111 | 1111 1111 这就是负数-1的补码了
那么负整数在内存中的32位最大可以表示为
1111 1111 | 1111 1111 | 1111 1111 | 1111 1111 这个是最大负整数的原码了,也就是-(2^31-1)=-2147483647那么为什么范围是-2147483648开始呢???
1000 0000 | 0000 0000 | 0000 0000 | 0000 0001 这个是最大负整数对应的补码了,那么还有一种情况没有包含进去,就是当补码是全0的情况,也就是-0这种情况,在二进制中0可以表示为-0和+0这两种情况,但是0只有一个,所以取-0这种情况,
当这个最小负整数的补码除符号位外全是0的时候,就是-0的原码了,所以-0是最小的那个数,也就是-2147483648,但其实这个数在内存中并不存在原码,这个补码也不是真正的补码,真正的补码是
1 1000 0000 | 0000 0000 | 0000 0000 | 0000 0000 已经溢出了
那么我们再来考虑下如果取的int的值超过这个范围会怎么样,我们用一个程序来验证下

#include<iostream> 
using namespace std;
int main()
{
	int i=2147483647;
	int j=2147483648;
	int k=2147483649;
	cout<<i<<endl;
	cout<<j<<endl;
	cout<<k<<endl;
	return 0;
}

输出结果

int result
从上图输出结果来看,可以看到一个很有趣的结果,就是正整数超出2147483647范围后出现了循环取值的现象,也就是2147483648溢出后回到了最小负整数-2147483648,2147483649溢出后变成了-2147483648+1=-2147483647,依次类推。
所以2147483649可以表示为-2147483648+1,1000 0000 | 0000 0000 | 0000 0000 | 0000 0000 + 0000 0000 | 0000 0000 | 0000 0000 | 0000 0001 = 1000 0000 | 0000 0000 | 0000 0000 | 0000 0001
所以int整型溢出后可以用这样的方式类推。

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页