深度学习7日入门cv疫情特辑学习心得

课程简介

直播内容包含两个部分,理论和实践,课后需要完成每次的作业和一次比赛。整个课程的内容还是比较丰富的,参加课程前还是需要掌握基本的python和深度学习基础知识。

其中几次作业虽然标题不一样,数据不一样,本质上都是分类任务。day2对于不同的手势图片进行分类,day3是对于切割后的车牌字符(省份简称和字母、数字)进行分类,day4对于戴口罩和不戴口罩的人脸图片进行二分类。这三个作业主要就是去搭不同结构的网络,相同的步骤就是:

1.数据处理:从给定文件夹读数据和相应的label,自定义数据的reader

2.定义网络:卷积Conv2D,池化Pool2D,全连接Linear 分类网络主要就是使用这三种操作

3.网络训练:选定一种优化器Optimizer,设置初始学习率,迭代次数

4.模型校验:eval模式,使用测试集进行准确率评估

通用的调优技巧:

  • 对于数据量较小,也比较简单的数据集,网络容易过拟合,使用常用的防止过拟合手段:数据增强,减少模型参数量,正则化,early stopping,dropout
  • 每隔一定数量的minibatch就在验证集评估一次模型效果,仅保存表现最好的模型(但是在这个课程中有些混淆测试集和验证集的概念,应该说明提供的是验证集而不是测试集)
  • 选择合适的优化器sgd,adam等等,设置学习率decay
  • 适当调整batch_size和训练的迭代次数

 

 

比赛:人流密度检测

比赛这个课题之前没怎么接触过,想要查找相关论文的话,关键词是crowd counting,最近北航有发一篇综述

比赛时间紧张,就大概看了一下 CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly Congested Scenes, CVPR2018 

整个网络架构很简单,就是vgg backbone接空洞卷积,生成密度图,论文里写到配置b效果最好。

比赛中提供数据的标注方式有两种:1.number+ 人的检测框 2.number + 头部点 

CSRNet需要将标注转换成密度图,然后进行训练,实际跑下来,效果不是很好,和其他同学交流下来做到的精度度也是差不多

排名比较靠前的方案有:直接回归,目标检测,最后请了第二名同学来分享,用的方法是头部点转头部框,检测头部+检测人 接nms,想法还是挺好的。

实际上比赛的数据并不是非常crowd,一张图像里至多也就几十人,最少两三人。

对于这个方向之后有空会研读一下综述论文,感觉这个课题还是挺有意思的,而且感觉还有继续挖掘的潜力。

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值