堆:堆是一个完全二叉树或者近似于一个完全二叉树
最大堆:父节点的值大于等于左右节点的值;
最小堆:父节点的值小于等于左右节点的值
堆可以用一个数组来存储:第i个节点的根节点是(i-1)/2,左节点为i*2+1,右节点为i*2+3;
堆有两种操作一种是插入,一种是删除
插入的时候插入在最后 然后进行向上维护
删除的时候需要将最后一个元素来替换这个元素的位置 然后向下维护;
删除和插入的操作都是log(n)的复杂度
每次操作都进行维护了 所以从每一个值的父节点到根节点都是一个有序的序列
下面是将所有操作 和 堆排序封装起来的一个代码:
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int maxn = 100000;
struct Heap{
int heap[maxn];
int Sort_heap[maxn];
int size=0,cnt;
void shift_up(int t){//向上维护
bool done = 0;
if(t == 0) return ;
while(t && !done){
if(heap[t]>heap[(t-1)/2])
swap(heap[t],heap[(t-1)/2]);
else
done = 1;
t=(t-1)/2;//返回根节点
}
}
void shift_down(int t){//向下维护
bool done = 0;
if(2 * t + 1 > size) return ;
while(2 * t + 1 < size && !done){
t= 2 * t + 1;//找到子节点
if(t+1 < size && heap[t+1] > heap[t]) t++;
if(heap[(t-1)/2]<heap[t])
swap(heap[(t-1)/2],heap[t]);
else
done = 1;
}
}
void Insert(int x){
heap[size]=x;
shift_up(size++);
}
void Delete(int t){
int last = heap[size-1];
size--;
if(t == size) return ;
heap[t] = last;
shift_down(t);
}
void Sort(){
cnt = size;
for(int i = 0; i < cnt; i++){
Sort_heap[i]=heap[0];
Delete(0);
}
}
};
int main()
{
Heap h;
int x;
while(~scanf("%d",&x) && x){
h.Insert(x);
}
h.Sort();
for(int i=0;i<h.cnt;i++)
cout<<h.Sort_heap[i]<<" ";
cout<<endl;
return 0;
}
/****
5 4 3 1 2
***/